Font-To-Sketch / app.py
Badr AlKhamissi
added collage
e53cddc
raw
history blame
12.5 kB
import gradio as gr
import os
import argparse
from easydict import EasyDict as edict
import yaml
import os.path as osp
import random
import numpy.random as npr
import sys
# sys.path.append('./code')
sys.path.append('/home/user/app/code')
# set up diffvg
# os.system('git clone https://github.com/BachiLi/diffvg.git')
os.system('git submodule update --init')
os.chdir('diffvg')
os.system('git submodule update --init --recursive')
os.system('python setup.py install --user')
sys.path.append("/home/user/.local/lib/python3.8/site-packages/diffvg-0.0.1-py3.8-linux-x86_64.egg")
os.chdir('/home/user/app')
import torch
from diffusers import StableDiffusionPipeline
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# model = None
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
from typing import Mapping
from tqdm import tqdm
import torch
from torch.optim.lr_scheduler import LambdaLR
import pydiffvg
import save_svg
from losses import SDSLoss, ToneLoss, ConformalLoss
from utils import (
edict_2_dict,
update,
check_and_create_dir,
get_data_augs,
save_image,
preprocess,
learning_rate_decay,
combine_word)
import warnings
TITLE="""<h1 style="font-size: 42px;" align="center">Word-To-Image: Morphing Arabic Text to a Visual Representation</h1>"""
DESCRIPTION="""This demo builds on the [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/) work to support Arabic fonts and morphing whole words into semantic concepts. It is part of an ongoing project with the [ARBML](https://arbml.github.io/website/) community."""
# DESCRIPTION += '\n<p>This demo is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p>'
# DESCRIPTION += """<br>For faster inference without waiting in queue, you can [![]()]()"""
DESCRIPTION += '\n<p>For faster inference without waiting in queue, you can <a href="https://colab.research.google.com/drive/1wobOAsnLpkIzaRxG5yac8NcV7iCrlycP"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></p>'
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
DESCRIPTION = DESCRIPTION.replace("</p>", " ")
DESCRIPTION += f'or duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/{SPACE_ID}?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
else:
DESCRIPTION = DESCRIPTION.replace("either", "")
DESCRIPTION += "<img src='https://raw.githubusercontent.com/BKHMSI/Word-As-Image-Ar/main/collage.gif' alt='Example of Outputs'/>"
warnings.filterwarnings("ignore")
pydiffvg.set_print_timing(False)
gamma = 1.0
def set_config(semantic_concept, word, prompt, font_name, num_steps):
cfg_d = edict()
cfg_d.config = "code/config/base.yaml"
cfg_d.experiment = "demo"
with open(cfg_d.config, 'r') as f:
cfg_full = yaml.load(f, Loader=yaml.FullLoader)
cfg_key = cfg_d.experiment
cfgs = [cfg_d]
while cfg_key:
cfgs.append(cfg_full[cfg_key])
cfg_key = cfgs[-1].get('parent_config', 'baseline')
cfg = edict()
for options in reversed(cfgs):
update(cfg, options)
del cfgs
cfg.semantic_concept = semantic_concept
cfg.word = word
cfg.optimized_letter = word
cfg.font = font_name
cfg.seed = 0
cfg.num_iter = num_steps
cfg.batch_size = 1
if ' ' in cfg.word:
raise gr.Error(f'should be only one word')
cfg.caption = prompt
cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
if cfg.optimized_letter in cfg.word:
cfg.optimized_letter = cfg.optimized_letter
else:
raise gr.Error(f'letter should be in word')
cfg.letter = f"{cfg.font}_{cfg.optimized_letter}_scaled"
cfg.target = f"code/data/init/{cfg.letter}"
# set experiment dir
signature = f"{cfg.letter}_concept_{cfg.semantic_concept}_seed_{cfg.seed}"
cfg.experiment_dir = \
osp.join(cfg.log_dir, cfg.font, signature)
configfile = osp.join(cfg.experiment_dir, 'config.yaml')
# create experiment dir and save config
check_and_create_dir(configfile)
with open(osp.join(configfile), 'w') as f:
yaml.dump(edict_2_dict(cfg), f)
if cfg.seed is not None:
random.seed(cfg.seed)
npr.seed(cfg.seed)
torch.manual_seed(cfg.seed)
torch.backends.cudnn.benchmark = False
else:
assert False
return cfg
def init_shapes(svg_path, trainable: Mapping[str, bool]):
svg = f'{svg_path}.svg'
canvas_width, canvas_height, shapes_init, shape_groups_init = pydiffvg.svg_to_scene(svg)
parameters = edict()
# path points
if trainable.point:
parameters.point = []
for path in shapes_init:
path.points.requires_grad = True
parameters.point.append(path.points)
return shapes_init, shape_groups_init, parameters
def run_main_ex(word, semantic_concept, num_steps):
prompt = f"a {semantic_concept}. minimal flat 2d vector. lineal color. trending on artstation"
font_name = "ArefRuqaa"
return list(next(run_main_app(semantic_concept, word, prompt, font_name, num_steps, 0)))
def run_main_app(semantic_concept, word, prompt, font_name, num_steps, example=0):
cfg = set_config(semantic_concept, word, prompt, font_name, num_steps)
pydiffvg.set_use_gpu(torch.cuda.is_available())
print("preprocessing")
preprocess(cfg.font, cfg.word, cfg.optimized_letter, cfg.level_of_cc)
filename_init = os.path.join("code/data/init/", f"{cfg.font}_{cfg.word}_scaled.svg").replace(" ", "_")
if not example:
yield gr.update(value=filename_init,visible=True),gr.update(visible=True, label=f'iters: 0 / {cfg.num_iter}'),gr.update(visible=False)
sds_loss = SDSLoss(cfg, device, model)
h, w = cfg.render_size, cfg.render_size
data_augs = get_data_augs(cfg.cut_size)
render = pydiffvg.RenderFunction.apply
# initialize shape
print('initializing shape')
shapes, shape_groups, parameters = init_shapes(svg_path=cfg.target, trainable=cfg.trainable)
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img_init = render(w, h, 2, 2, 0, None, *scene_args)
img_init = img_init[:, :, 3:4] * img_init[:, :, :3] + \
torch.ones(img_init.shape[0], img_init.shape[1], 3, device=device) * (1 - img_init[:, :, 3:4])
img_init = img_init[:, :, :3]
tone_loss = ToneLoss(cfg)
tone_loss.set_image_init(img_init)
num_iter = cfg.num_iter
pg = [{'params': parameters["point"], 'lr': cfg.lr_base["point"]}]
optim = torch.optim.Adam(pg, betas=(0.9, 0.9), eps=1e-6)
conformal_loss = ConformalLoss(parameters, device, cfg.optimized_letter, shape_groups)
lr_lambda = lambda step: learning_rate_decay(step, cfg.lr.lr_init, cfg.lr.lr_final, num_iter,
lr_delay_steps=cfg.lr.lr_delay_steps,
lr_delay_mult=cfg.lr.lr_delay_mult) / cfg.lr.lr_init
scheduler = LambdaLR(optim, lr_lambda=lr_lambda, last_epoch=-1) # lr.base * lrlambda_f
print("start training")
# training loop
t_range = tqdm(range(num_iter))
for step in t_range:
optim.zero_grad()
# render image
scene_args = pydiffvg.RenderFunction.serialize_scene(w, h, shapes, shape_groups)
img = render(w, h, 2, 2, step, None, *scene_args)
# compose image with white background
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
1 - img[:, :, 3:4])
img = img[:, :, :3]
filename = os.path.join(
cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
check_and_create_dir(filename)
save_svg.save_svg(filename, w, h, shapes, shape_groups)
if not example:
yield gr.update(visible=True),gr.update(value=filename, label=f'iters: {step} / {num_iter}', visible=True),gr.update(visible=False)
x = img.unsqueeze(0).permute(0, 3, 1, 2) # HWC -> NCHW
x = x.repeat(cfg.batch_size, 1, 1, 1)
x_aug = data_augs.forward(x)
# compute diffusion loss per pixel
loss = sds_loss(x_aug)
tone_loss_res = tone_loss(x, step)
loss = loss + tone_loss_res
loss_angles = conformal_loss()
loss_angles = cfg.loss.conformal.angeles_w * loss_angles
loss = loss + loss_angles
loss.backward()
optim.step()
scheduler.step()
filename = os.path.join(
cfg.experiment_dir, "output-svg", "output.svg")
check_and_create_dir(filename)
save_svg.save_svg(
filename, w, h, shapes, shape_groups)
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir, device)
image = os.path.join(cfg.experiment_dir,f"{cfg.font}_{cfg.word}_{cfg.optimized_letter}.svg")
yield gr.update(value=filename_init,visible=True),gr.update(visible=True),gr.update(value=image,visible=True)
def change_prompt(concept, prompt_suffix):
if concept == "":
concept = "{concept}"
return f"a {concept}. {prompt_suffix}"
with gr.Blocks() as demo:
gr.HTML(TITLE)
gr.Markdown(DESCRIPTION)
with gr.Row():
with gr.Column():
word = gr.Text(
label='Text',
max_lines=1,
placeholder=
'Enter text. For example: حصان'
)
semantic_concept = gr.Text(
label='Concept',
max_lines=1,
placeholder=
'Enter a semantic concept that you want your text to morph into (in English). For example: horse'
)
prompt_suffix = gr.Text(
label='Prompt Suffix',
max_lines=1,
value="minimal flat 2d vector. lineal color. trending on artstation"
)
prompt = gr.Text(
label='Prompt',
max_lines=1,
value="a {concept}. minimal flat 2d vector. lineal color. trending on artstation."
)
semantic_concept.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
prompt_suffix.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
num_steps = gr.Slider(label='Optimization Iterations',
minimum=0,
maximum=500,
step=10,
value=500)
font_name = gr.Text(value=None,visible=False,label="Font Name")
def on_select(evt: gr.SelectData):
return evt.value
font_name.value = "ArefRuqaa"
run = gr.Button('Generate')
with gr.Column():
result0 = gr.Image(type="filepath", label="Initial Word").style(height=170)
result1 = gr.Image(type="filepath", label="Optimization Process").style(height=300)
result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=100)
with gr.Row():
# examples
examples = [
["قطة", "Cat", 500],
["كلب", "Dog", 500],
["حصان", "Horse", 500],
["أخطبوط", "Octopus", 500],
]
demo.queue(max_size=10, concurrency_count=2)
gr.Examples(examples=examples,
inputs=[
word,
semantic_concept,
num_steps
],
outputs=[
result0,
result1,
result2
],
fn=run_main_ex,
cache_examples=False)
# inputs
inputs = [
semantic_concept,
word,
prompt,
font_name,
num_steps
]
outputs = [
result0,
result1,
result2
]
run.click(fn=run_main_app, inputs=inputs, outputs=outputs, queue=True)
demo.launch(share=False)