Spaces:
Runtime error
Runtime error
Badr AlKhamissi
commited on
Commit
•
725ab64
1
Parent(s):
e53cddc
added new features
Browse files- app.py +74 -27
- code/config.py +2 -2
- requirements.txt +1 -0
app.py
CHANGED
@@ -7,6 +7,7 @@ import os.path as osp
|
|
7 |
import random
|
8 |
import numpy.random as npr
|
9 |
import sys
|
|
|
10 |
|
11 |
# sys.path.append('./code')
|
12 |
|
@@ -29,7 +30,7 @@ from diffusers import StableDiffusionPipeline
|
|
29 |
|
30 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
31 |
|
32 |
-
|
33 |
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
|
34 |
|
35 |
from typing import Mapping
|
@@ -56,7 +57,6 @@ TITLE="""<h1 style="font-size: 42px;" align="center">Word-To-Image: Morphing Ara
|
|
56 |
DESCRIPTION="""This demo builds on the [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/) work to support Arabic fonts and morphing whole words into semantic concepts. It is part of an ongoing project with the [ARBML](https://arbml.github.io/website/) community."""
|
57 |
|
58 |
# DESCRIPTION += '\n<p>This demo is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p>'
|
59 |
-
# DESCRIPTION += """<br>For faster inference without waiting in queue, you can [![]()]()"""
|
60 |
DESCRIPTION += '\n<p>For faster inference without waiting in queue, you can <a href="https://colab.research.google.com/drive/1wobOAsnLpkIzaRxG5yac8NcV7iCrlycP"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></p>'
|
61 |
|
62 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
@@ -74,7 +74,7 @@ pydiffvg.set_print_timing(False)
|
|
74 |
gamma = 1.0
|
75 |
|
76 |
|
77 |
-
def set_config(semantic_concept, word,
|
78 |
|
79 |
cfg_d = edict()
|
80 |
cfg_d.config = "code/config/base.yaml"
|
@@ -95,16 +95,22 @@ def set_config(semantic_concept, word, prompt, font_name, num_steps):
|
|
95 |
del cfgs
|
96 |
|
97 |
cfg.semantic_concept = semantic_concept
|
|
|
98 |
cfg.word = word
|
99 |
cfg.optimized_letter = word
|
100 |
cfg.font = font_name
|
101 |
-
cfg.seed =
|
102 |
cfg.num_iter = num_steps
|
103 |
cfg.batch_size = 1
|
|
|
|
|
|
|
|
|
104 |
|
105 |
-
if ' ' in cfg.word:
|
106 |
-
|
107 |
-
|
|
|
108 |
cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
|
109 |
if cfg.optimized_letter in cfg.word:
|
110 |
cfg.optimized_letter = cfg.optimized_letter
|
@@ -151,14 +157,14 @@ def init_shapes(svg_path, trainable: Mapping[str, bool]):
|
|
151 |
return shapes_init, shape_groups_init, parameters
|
152 |
|
153 |
|
154 |
-
def run_main_ex(word, semantic_concept, num_steps):
|
155 |
-
|
156 |
font_name = "ArefRuqaa"
|
157 |
-
return list(next(run_main_app(semantic_concept, word,
|
158 |
|
159 |
-
def run_main_app(semantic_concept, word,
|
160 |
|
161 |
-
cfg = set_config(semantic_concept, word,
|
162 |
|
163 |
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
164 |
|
@@ -204,6 +210,7 @@ def run_main_app(semantic_concept, word, prompt, font_name, num_steps, example=0
|
|
204 |
print("start training")
|
205 |
# training loop
|
206 |
t_range = tqdm(range(num_iter))
|
|
|
207 |
for step in t_range:
|
208 |
optim.zero_grad()
|
209 |
|
@@ -215,9 +222,10 @@ def run_main_app(semantic_concept, word, prompt, font_name, num_steps, example=0
|
|
215 |
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
|
216 |
1 - img[:, :, 3:4])
|
217 |
img = img[:, :, :3]
|
|
|
218 |
|
219 |
-
|
220 |
-
|
221 |
check_and_create_dir(filename)
|
222 |
save_svg.save_svg(filename, w, h, shapes, shape_groups)
|
223 |
if not example:
|
@@ -250,8 +258,10 @@ def run_main_app(semantic_concept, word, prompt, font_name, num_steps, example=0
|
|
250 |
|
251 |
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir, device)
|
252 |
|
253 |
-
|
254 |
-
|
|
|
|
|
255 |
|
256 |
|
257 |
def change_prompt(concept, prompt_suffix):
|
@@ -294,6 +304,37 @@ with gr.Blocks() as demo:
|
|
294 |
value="a {concept}. minimal flat 2d vector. lineal color. trending on artstation."
|
295 |
)
|
296 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
297 |
semantic_concept.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
|
298 |
prompt_suffix.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
|
299 |
|
@@ -301,7 +342,7 @@ with gr.Blocks() as demo:
|
|
301 |
minimum=0,
|
302 |
maximum=500,
|
303 |
step=10,
|
304 |
-
value=
|
305 |
|
306 |
font_name = gr.Text(value=None,visible=False,label="Font Name")
|
307 |
|
@@ -314,25 +355,26 @@ with gr.Blocks() as demo:
|
|
314 |
run = gr.Button('Generate')
|
315 |
|
316 |
with gr.Column():
|
317 |
-
result0 = gr.Image(type="filepath", label="Initial Word").style(height=
|
318 |
result1 = gr.Image(type="filepath", label="Optimization Process").style(height=300)
|
319 |
-
result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=
|
320 |
|
321 |
|
322 |
with gr.Row():
|
323 |
# examples
|
324 |
examples = [
|
325 |
-
["قطة", "Cat",
|
326 |
-
["كلب", "Dog",
|
327 |
-
["حصان", "Horse",
|
328 |
-
["أخطبوط", "Octopus",
|
329 |
]
|
330 |
-
demo.queue(max_size=10, concurrency_count=
|
331 |
gr.Examples(examples=examples,
|
332 |
inputs=[
|
333 |
word,
|
334 |
semantic_concept,
|
335 |
-
num_steps
|
|
|
336 |
],
|
337 |
outputs=[
|
338 |
result0,
|
@@ -347,9 +389,14 @@ with gr.Blocks() as demo:
|
|
347 |
inputs = [
|
348 |
semantic_concept,
|
349 |
word,
|
350 |
-
|
351 |
font_name,
|
352 |
-
num_steps
|
|
|
|
|
|
|
|
|
|
|
353 |
]
|
354 |
|
355 |
outputs = [
|
|
|
7 |
import random
|
8 |
import numpy.random as npr
|
9 |
import sys
|
10 |
+
import imageio
|
11 |
|
12 |
# sys.path.append('./code')
|
13 |
|
|
|
30 |
|
31 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
32 |
|
33 |
+
model = None
|
34 |
model = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5").to(device)
|
35 |
|
36 |
from typing import Mapping
|
|
|
57 |
DESCRIPTION="""This demo builds on the [Word-As-Image for Semantic Typography](https://wordasimage.github.io/Word-As-Image-Page/) work to support Arabic fonts and morphing whole words into semantic concepts. It is part of an ongoing project with the [ARBML](https://arbml.github.io/website/) community."""
|
58 |
|
59 |
# DESCRIPTION += '\n<p>This demo is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"> Creative Commons Attribution-ShareAlike 4.0 International License</a>.</p>'
|
|
|
60 |
DESCRIPTION += '\n<p>For faster inference without waiting in queue, you can <a href="https://colab.research.google.com/drive/1wobOAsnLpkIzaRxG5yac8NcV7iCrlycP"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a></p>'
|
61 |
|
62 |
if (SPACE_ID := os.getenv('SPACE_ID')) is not None:
|
|
|
74 |
gamma = 1.0
|
75 |
|
76 |
|
77 |
+
def set_config(semantic_concept, word, prompt_suffix, font_name, num_steps, seed, dist_loss_weight, pixel_dist_kernel_blur, pixel_dist_sigma, angeles_w):
|
78 |
|
79 |
cfg_d = edict()
|
80 |
cfg_d.config = "code/config/base.yaml"
|
|
|
95 |
del cfgs
|
96 |
|
97 |
cfg.semantic_concept = semantic_concept
|
98 |
+
cfg.prompt_suffix = prompt_suffix
|
99 |
cfg.word = word
|
100 |
cfg.optimized_letter = word
|
101 |
cfg.font = font_name
|
102 |
+
cfg.seed = seed
|
103 |
cfg.num_iter = num_steps
|
104 |
cfg.batch_size = 1
|
105 |
+
cfg.loss.tone.dist_loss_weight = dist_loss_weight
|
106 |
+
cfg.loss.tone.pixel_dist_kernel_blur = pixel_dist_kernel_blur
|
107 |
+
cfg.loss.tone.pixel_dist_sigma = pixel_dist_sigma
|
108 |
+
cfg.loss.conformal.angeles_w = angeles_w
|
109 |
|
110 |
+
# if ' ' in cfg.word:
|
111 |
+
# raise gr.Error(f'should be only one word')
|
112 |
+
|
113 |
+
cfg.caption = f"a {cfg.semantic_concept}. {cfg.prompt_suffix}"
|
114 |
cfg.log_dir = f"output/{cfg.experiment}_{cfg.word}"
|
115 |
if cfg.optimized_letter in cfg.word:
|
116 |
cfg.optimized_letter = cfg.optimized_letter
|
|
|
157 |
return shapes_init, shape_groups_init, parameters
|
158 |
|
159 |
|
160 |
+
def run_main_ex(word, semantic_concept, num_steps, seed):
|
161 |
+
prompt_suffix = "minimal flat 2d vector. lineal color. trending on artstation"
|
162 |
font_name = "ArefRuqaa"
|
163 |
+
return list(next(run_main_app(semantic_concept, word, prompt_suffix, font_name, num_steps, seed, 100, 201, 30, 0.5, 0)))
|
164 |
|
165 |
+
def run_main_app(semantic_concept, word, prompt_suffix, font_name, num_steps, seed, dist_loss_weight, pixel_dist_kernel_blur, pixel_dist_sigma, angeles_w, example=0):
|
166 |
|
167 |
+
cfg = set_config(semantic_concept, word, prompt_suffix, font_name, num_steps, seed, dist_loss_weight, pixel_dist_kernel_blur, pixel_dist_sigma, angeles_w)
|
168 |
|
169 |
pydiffvg.set_use_gpu(torch.cuda.is_available())
|
170 |
|
|
|
210 |
print("start training")
|
211 |
# training loop
|
212 |
t_range = tqdm(range(num_iter))
|
213 |
+
gif_frames = []
|
214 |
for step in t_range:
|
215 |
optim.zero_grad()
|
216 |
|
|
|
222 |
img = img[:, :, 3:4] * img[:, :, :3] + torch.ones(img.shape[0], img.shape[1], 3, device=device) * (
|
223 |
1 - img[:, :, 3:4])
|
224 |
img = img[:, :, :3]
|
225 |
+
gif_frames += [img]
|
226 |
|
227 |
+
|
228 |
+
filename = os.path.join(cfg.experiment_dir, "video-svg", f"iter{step:04d}.svg")
|
229 |
check_and_create_dir(filename)
|
230 |
save_svg.save_svg(filename, w, h, shapes, shape_groups)
|
231 |
if not example:
|
|
|
258 |
|
259 |
combine_word(cfg.word, cfg.optimized_letter, cfg.font, cfg.experiment_dir, device)
|
260 |
|
261 |
+
filename = os.path.join(cfg.experiment_dir, "final.gif")
|
262 |
+
imageio.mimsave(filename, gif_frames)
|
263 |
+
|
264 |
+
yield gr.update(value=filename_init,visible=True),gr.update(visible=False),gr.update(value=filename,visible=True)
|
265 |
|
266 |
|
267 |
def change_prompt(concept, prompt_suffix):
|
|
|
304 |
value="a {concept}. minimal flat 2d vector. lineal color. trending on artstation."
|
305 |
)
|
306 |
|
307 |
+
with gr.Row():
|
308 |
+
|
309 |
+
with gr.Accordion("Advanced Parameters", open=False, visible=True):
|
310 |
+
|
311 |
+
seed = gr.Number(
|
312 |
+
label='Seed',
|
313 |
+
value=42
|
314 |
+
)
|
315 |
+
|
316 |
+
angeles_w = gr.Number(
|
317 |
+
label='ACAP Deformation Loss Weight',
|
318 |
+
value=0.5
|
319 |
+
)
|
320 |
+
|
321 |
+
dist_loss_weight = gr.Number(
|
322 |
+
label='Tone Loss: dist_loss_weight',
|
323 |
+
value=100
|
324 |
+
)
|
325 |
+
|
326 |
+
pixel_dist_kernel_blur = gr.Number(
|
327 |
+
label='Tone Loss: pixel_dist_kernel_blur',
|
328 |
+
value=201
|
329 |
+
)
|
330 |
+
|
331 |
+
pixel_dist_sigma = gr.Number(
|
332 |
+
label='Tone Loss: pixel_dist_sigma',
|
333 |
+
value=30
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
|
338 |
semantic_concept.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
|
339 |
prompt_suffix.change(change_prompt, [semantic_concept, prompt_suffix], prompt)
|
340 |
|
|
|
342 |
minimum=0,
|
343 |
maximum=500,
|
344 |
step=10,
|
345 |
+
value=250)
|
346 |
|
347 |
font_name = gr.Text(value=None,visible=False,label="Font Name")
|
348 |
|
|
|
355 |
run = gr.Button('Generate')
|
356 |
|
357 |
with gr.Column():
|
358 |
+
result0 = gr.Image(type="filepath", label="Initial Word").style(height=250)
|
359 |
result1 = gr.Image(type="filepath", label="Optimization Process").style(height=300)
|
360 |
+
result2 = gr.Image(type="filepath", label="Final Result",visible=False).style(height=300)
|
361 |
|
362 |
|
363 |
with gr.Row():
|
364 |
# examples
|
365 |
examples = [
|
366 |
+
["قطة", "Cat", 250, 42],
|
367 |
+
["كلب", "Dog", 250, 42],
|
368 |
+
["حصان", "Horse", 250, 42],
|
369 |
+
["أخطبوط", "Octopus", 250, 42],
|
370 |
]
|
371 |
+
demo.queue(max_size=10, concurrency_count=1)
|
372 |
gr.Examples(examples=examples,
|
373 |
inputs=[
|
374 |
word,
|
375 |
semantic_concept,
|
376 |
+
num_steps,
|
377 |
+
seed
|
378 |
],
|
379 |
outputs=[
|
380 |
result0,
|
|
|
389 |
inputs = [
|
390 |
semantic_concept,
|
391 |
word,
|
392 |
+
prompt_suffix,
|
393 |
font_name,
|
394 |
+
num_steps,
|
395 |
+
seed,
|
396 |
+
dist_loss_weight,
|
397 |
+
pixel_dist_kernel_blur,
|
398 |
+
pixel_dist_sigma,
|
399 |
+
angeles_w
|
400 |
]
|
401 |
|
402 |
outputs = [
|
code/config.py
CHANGED
@@ -40,8 +40,8 @@ def parse_args():
|
|
40 |
cfg.font = args.font
|
41 |
cfg.semantic_concept = args.semantic_concept
|
42 |
cfg.word = cfg.semantic_concept if args.word == "none" else args.word
|
43 |
-
if " " in cfg.word:
|
44 |
-
|
45 |
if "jpeg" in args.semantic_concept:
|
46 |
cfg.caption = args.semantic_concept
|
47 |
else:
|
|
|
40 |
cfg.font = args.font
|
41 |
cfg.semantic_concept = args.semantic_concept
|
42 |
cfg.word = cfg.semantic_concept if args.word == "none" else args.word
|
43 |
+
# if " " in cfg.word:
|
44 |
+
# raise ValueError(f'no spaces are allowed')
|
45 |
if "jpeg" in args.semantic_concept:
|
46 |
cfg.caption = args.semantic_concept
|
47 |
else:
|
requirements.txt
CHANGED
@@ -5,6 +5,7 @@ torchvision==0.13.1+cu113
|
|
5 |
cmake
|
6 |
numpy
|
7 |
scikit-image
|
|
|
8 |
ffmpeg
|
9 |
svgwrite
|
10 |
svgpathtools
|
|
|
5 |
cmake
|
6 |
numpy
|
7 |
scikit-image
|
8 |
+
imageio
|
9 |
ffmpeg
|
10 |
svgwrite
|
11 |
svgpathtools
|