File size: 10,212 Bytes
a153c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
from itertools import count
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel

from detectron2.modeling import GeneralizedRCNNWithTTA, DatasetMapperTTA
from detectron2.modeling.roi_heads.fast_rcnn import fast_rcnn_inference_single_image
from detectron2.structures import Instances, Boxes


class RegionSpotWithTTA(GeneralizedRCNNWithTTA):

    def __init__(self, cfg, model, tta_mapper=None, batch_size=3):
        """
            Args:
                cfg (CfgNode):
                model ( RegionSpot): a  RegionSpot to apply TTA on.
                tta_mapper (callable): takes a dataset dict and returns a list of
                    augmented versions of the dataset dict. Defaults to
                    `DatasetMapperTTA(cfg)`.
                batch_size (int): batch the augmented images into this batch size for inference.
        """
        # fix the issue: cannot assign module before Module.__init__() call
        nn.Module.__init__(self)
        if isinstance(model, DistributedDataParallel):
            model = model.module

        self.cfg = cfg.clone()
        self.model = model

        if tta_mapper is None:
            tta_mapper = DatasetMapperTTA(cfg)
        self.tta_mapper = tta_mapper
        self.batch_size = batch_size

        # cvpods tta.
        self.enable_cvpods_tta = cfg.TEST.AUG.CVPODS_TTA
        self.enable_scale_filter = cfg.TEST.AUG.SCALE_FILTER
        self.scale_ranges = cfg.TEST.AUG.SCALE_RANGES
        self.max_detection = cfg.MODEL.RegionSpot.NUM_PROPOSALS

    def _batch_inference(self, batched_inputs, detected_instances=None):
        """
        Execute inference on a list of inputs,
        using batch size = self.batch_size, instead of the length of the list.

        """
        if detected_instances is None:
            detected_instances = [None] * len(batched_inputs)

        factors = 2 if self.tta_mapper.flip else 1
        if self.enable_scale_filter:
            assert len(batched_inputs) == len(self.scale_ranges) * factors

        outputs = []
        inputs, instances = [], []
        for idx, input, instance in zip(count(), batched_inputs, detected_instances):
            inputs.append(input)
            instances.append(instance)
            if self.enable_cvpods_tta:
                output = self.model.forward(inputs, do_postprocess=False)[0]
                if self.enable_scale_filter:
                    pred_boxes = output.get("pred_boxes")
                    keep = self.filter_boxes(pred_boxes.tensor, *self.scale_ranges[idx // factors])
                    output = Instances(
                        image_size=output.image_size,
                        pred_boxes=Boxes(pred_boxes.tensor[keep]),
                        pred_classes=output.pred_classes[keep],
                        scores=output.scores[keep])
                outputs.extend([output])
            else:

                if len(inputs) == self.batch_size or idx == len(batched_inputs) - 1:
                    outputs.extend(
                        self.model.forward(
                            inputs,
                            do_postprocess=False,
                        )
                    )
            inputs, instances = [], []
        return outputs

    @staticmethod
    def filter_boxes(boxes, min_scale, max_scale):
        """
        boxes: (N, 4) shape
        """
        # assert boxes.mode == "xyxy"
        w = boxes[:, 2] - boxes[:, 0]
        h = boxes[:, 3] - boxes[:, 1]
        keep = (w * h > min_scale * min_scale) & (w * h < max_scale * max_scale)
        return keep

    def _inference_one_image(self, input):
        """
        Args:
            input (dict): one dataset dict with "image" field being a CHW tensor

        Returns:
            dict: one output dict
        """
        orig_shape = (input["height"], input["width"])
        augmented_inputs, tfms = self._get_augmented_inputs(input)
        # Detect boxes from all augmented versions
        all_boxes, all_scores, all_classes = self._get_augmented_boxes(augmented_inputs, tfms)
        # merge all detected boxes to obtain final predictions for boxes
        if self.enable_cvpods_tta:
            merged_instances = self._merge_detections_cvpods_tta(all_boxes, all_scores, all_classes, orig_shape)
        else:
            merged_instances = self._merge_detections(all_boxes, all_scores, all_classes, orig_shape)

        return {"instances": merged_instances}

    def _merge_detections(self, all_boxes, all_scores, all_classes, shape_hw):
        # select from the union of all results
        num_boxes = len(all_boxes)
        num_classes = self.cfg.MODEL. RegionSpot.NUM_CLASSES
        # +1 because fast_rcnn_inference expects background scores as well
        all_scores_2d = torch.zeros(num_boxes, num_classes + 1, device=all_boxes.device)
        for idx, cls, score in zip(count(), all_classes, all_scores):
            all_scores_2d[idx, cls] = score

        merged_instances, _ = fast_rcnn_inference_single_image(
            all_boxes,
            all_scores_2d,
            shape_hw,
            1e-8,
            self.cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST,
            self.cfg.TEST.DETECTIONS_PER_IMAGE,
        )

        return merged_instances

    def _merge_detections_cvpods_tta(self, all_boxes, all_scores, all_classes, shape_hw):
        all_scores = torch.tensor(all_scores).to(all_boxes.device)
        all_classes = torch.tensor(all_classes).to(all_boxes.device)

        all_boxes, all_scores, all_classes = self.merge_result_from_multi_scales(
            all_boxes, all_scores, all_classes,
            nms_type="soft_vote", vote_thresh=0.65,
            max_detection=self.max_detection
        )

        all_boxes = Boxes(all_boxes)
        all_boxes.clip(shape_hw)

        result = Instances(shape_hw)
        result.pred_boxes = all_boxes
        result.scores = all_scores
        result.pred_classes = all_classes.long()
        return result

    def merge_result_from_multi_scales(
            self, boxes, scores, labels, nms_type="soft-vote", vote_thresh=0.65, max_detection=100
    ):
        boxes, scores, labels = self.batched_vote_nms(
            boxes, scores, labels, nms_type, vote_thresh
        )

        number_of_detections = boxes.shape[0]
        # Limit to max_per_image detections **over all classes**
        if number_of_detections > max_detection > 0:
            boxes = boxes[:max_detection]
            scores = scores[:max_detection]
            labels = labels[:max_detection]

        return boxes, scores, labels

    def batched_vote_nms(self, boxes, scores, labels, vote_type, vote_thresh=0.65):
        # apply per class level nms, add max_coordinates on boxes first, then remove it.
        labels = labels.float()
        max_coordinates = boxes.max() + 1
        offsets = labels.reshape(-1, 1) * max_coordinates
        boxes = boxes + offsets

        boxes, scores, labels = self.bbox_vote(boxes, scores, labels, vote_thresh, vote_type)
        boxes -= labels.reshape(-1, 1) * max_coordinates

        return boxes, scores, labels

    def bbox_vote(self, boxes, scores, labels, vote_thresh, vote_type="softvote"):
        assert boxes.shape[0] == scores.shape[0] == labels.shape[0]
        det = torch.cat((boxes, scores.reshape(-1, 1), labels.reshape(-1, 1)), dim=1)

        vote_results = torch.zeros(0, 6, device=det.device)
        if det.numel() == 0:
            return vote_results[:, :4], vote_results[:, 4], vote_results[:, 5]

        order = scores.argsort(descending=True)
        det = det[order]

        while det.shape[0] > 0:
            # IOU
            area = (det[:, 2] - det[:, 0]) * (det[:, 3] - det[:, 1])
            xx1 = torch.max(det[0, 0], det[:, 0])
            yy1 = torch.max(det[0, 1], det[:, 1])
            xx2 = torch.min(det[0, 2], det[:, 2])
            yy2 = torch.min(det[0, 3], det[:, 3])
            w = torch.clamp(xx2 - xx1, min=0.)
            h = torch.clamp(yy2 - yy1, min=0.)
            inter = w * h
            iou = inter / (area[0] + area[:] - inter)

            # get needed merge det and delete these det
            merge_index = torch.where(iou >= vote_thresh)[0]
            vote_det = det[merge_index, :]
            det = det[iou < vote_thresh]

            if merge_index.shape[0] <= 1:
                vote_results = torch.cat((vote_results, vote_det), dim=0)
            else:
                if vote_type == "soft_vote":
                    vote_det_iou = iou[merge_index]
                    det_accu_sum = self.get_soft_dets_sum(vote_det, vote_det_iou)
                elif vote_type == "vote":
                    det_accu_sum = self.get_dets_sum(vote_det)
                vote_results = torch.cat((vote_results, det_accu_sum), dim=0)

        order = vote_results[:, 4].argsort(descending=True)
        vote_results = vote_results[order, :]

        return vote_results[:, :4], vote_results[:, 4], vote_results[:, 5]

    @staticmethod
    def get_dets_sum(vote_det):
        vote_det[:, :4] *= vote_det[:, 4:5].repeat(1, 4)
        max_score = vote_det[:, 4].max()
        det_accu_sum = torch.zeros((1, 6), device=vote_det.device)
        det_accu_sum[:, :4] = torch.sum(vote_det[:, :4], dim=0) / torch.sum(vote_det[:, 4])
        det_accu_sum[:, 4] = max_score
        det_accu_sum[:, 5] = vote_det[0, 5]
        return det_accu_sum

    @staticmethod
    def get_soft_dets_sum(vote_det, vote_det_iou):
        soft_vote_det = vote_det.detach().clone()
        soft_vote_det[:, 4] *= (1 - vote_det_iou)

        INFERENCE_TH = 0.05
        soft_index = torch.where(soft_vote_det[:, 4] >= INFERENCE_TH)[0]
        soft_vote_det = soft_vote_det[soft_index, :]

        vote_det[:, :4] *= vote_det[:, 4:5].repeat(1, 4)
        max_score = vote_det[:, 4].max()
        det_accu_sum = torch.zeros((1, 6), device=vote_det.device)
        det_accu_sum[:, :4] = torch.sum(vote_det[:, :4], dim=0) / torch.sum(vote_det[:, 4])
        det_accu_sum[:, 4] = max_score
        det_accu_sum[:, 5] = vote_det[0, 5]

        if soft_vote_det.shape[0] > 0:
            det_accu_sum = torch.cat((det_accu_sum, soft_vote_det), dim=0)
        return det_accu_sum