File size: 7,291 Bytes
a153c95
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from collections import namedtuple
from .modeling.regionspot import build_regionspot_model
import torch.cuda.amp as amp
import matplotlib.pyplot as plt
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from einops import rearrange
import json
from detectron2.modeling import META_ARCH_REGISTRY
from .util.postprocessing import segmentation_postprocess

from detectron2.structures import Boxes, Instances
from .util.preprocessing import prepare_prompt_infer, prepare_prompt_train

__all__ = ["RegionSpot"]



@META_ARCH_REGISTRY.register()
class RegionSpot(nn.Module):
    """
    Implement RegionSpot
    """
    def __init__(self, cfg):
        super().__init__()
        self.device = torch.device(cfg.MODEL.DEVICE)
        self.clip_type = cfg.MODEL.CLIP_TYPE
        self.inference_box_type = cfg.MODEL.BOX_TYPE
        self.clip_input_size = cfg.MODEL.CLIP_INPUT_SIZE
        self.clip_target_size = (self.clip_input_size, self.clip_input_size)
        self.model, _ = build_regionspot_model(clip_type = self.clip_type, is_training=cfg.MODEL.TRAINING, image_size=self.clip_input_size)
        self.model.to(self.device)
        if self.inference_box_type != 'GT':
            path = './datasets/glip_results/nms_results_glip_tiny_model_o365_goldg_cc_sbu_lvis_val.json'
            with open(path, 'r') as file:
                self.pred_results = json.load(file)
        else:
            self.pred_results = None
    
    @torch.no_grad()
    def foward_inference(self, batched_inputs, do_postprocess=True):
        with amp.autocast(enabled=True):
            with torch.no_grad():
                logits_per_image, pred_mask = self.model.forward_eval(batched_inputs, multimask_output=False)
        
        image_sizes = [x["original_size"] for x in batched_inputs]
        if self.inference_box_type == 'GT':
            boxes = torch.stack([x["instances"].gt_boxes.tensor for x in batched_inputs], dim=0) #n, n_box, n_token, 256
            if len(boxes[0]) == 0:
                boxes=torch.tensor([[[0,0, image_sizes[0][0], image_sizes[0][1]]]])
        else:
            boxes = torch.stack([x["pred_boxes"] for x in batched_inputs], dim=0) #n, n_box, n_token, 256
            scores = torch.stack([x["scores"] for x in batched_inputs], dim=0)

    
        box_cls = logits_per_image 
        box_pred = boxes 
        if self.inference_box_type == 'GT':
            results = self.inference_gt_box(box_cls, box_pred, pred_mask, image_sizes)
        else:
            results = self.inference_pred_box(box_cls, box_pred, scores, pred_mask, image_sizes)
        if do_postprocess:
            processed_results = []
            for results_per_image, input_per_image, image_size in zip(results, batched_inputs, image_sizes):
                height = input_per_image.get("height", image_size[0])
                width = input_per_image.get("width", image_size[1])
                r = segmentation_postprocess(results_per_image, height, width)
                processed_results.append({"instances": r})
            return processed_results
        else:
            return results

    def foward_train(self, batched_inputs):
        with amp.autocast(enabled=True):
            outputs = self.model.forward_train(batched_inputs)
        loss = {'loss': outputs}
        return loss
        
    def forward(self, batched_inputs, do_postprocess=True):
        if not self.training:
            # Prepare Prompt.
            batched_inputs = prepare_prompt_infer(batched_inputs, pred_results = self.pred_results, target_size=self.clip_target_size)

            results = self.foward_inference(batched_inputs)
            return results

        if self.training:
            batched_inputs = prepare_prompt_train(batched_inputs, target_size=self.clip_target_size)
            loss_dict = self.foward_train(batched_inputs)
            return loss_dict
        
    
    
    def inference_gt_box(self, box_cls, box_pred, pred_mask, image_sizes=None):

        device = box_cls.device  # assuming all tensors are on the same device
        results = []

        for logits, boxes, masks, img_size in zip(box_cls, box_pred, pred_mask, image_sizes):
            # Calculate probabilities and flatten them
            probs = F.softmax(logits, dim=-1)
            probs_flattened = probs.view(-1)
            
            # Determine number of top predictions to consider
            top_num = min(900, len(probs_flattened))
            
            # Get top-k values and indices
            topk_probs, topk_indices = torch.topk(probs_flattened, top_num)
            
            # Decode the top-k indices to get corresponding labels and boxes
            topk_labels = topk_indices % logits.shape[1]
            topk_boxes_indices = topk_indices // logits.shape[1]
            
            # Ensure boxes, masks and topk_boxes_indices are on the same device
            topk_boxes_indices = topk_boxes_indices.to(device)
            boxes = boxes.to(device)
            masks = masks.to(device)
            
            # Retrieve predictions using the top-k indices
            boxes_for_topk = boxes[topk_boxes_indices]
            masks_for_topk = masks[topk_boxes_indices]
            scores_for_topk = topk_probs # Modify accordingly if you have another score tensor
            # Create Instances object for top-k predictions
            result = Instances(img_size)
            result.pred_boxes = Boxes(boxes_for_topk)
            result.scores = scores_for_topk
            result.pred_classes = topk_labels
            result.pred_masks = masks_for_topk  # Added masks to the result
            results.append(result)

        return results

    def inference_pred_box(self, box_cls, box_pred, box_score, masks, image_sizes=None):

        results = []

        for i, (logits, box_pred_i, box_score_i, mask_i, img_size) in enumerate(zip(box_cls, box_pred, box_score, masks, image_sizes)):
            
            logits = logits.cuda() 
            box_pred_i = box_pred_i.cuda() 
            box_score_i = box_score_i.cuda()
            
            # Calculate probabilities and flatten them
            probs = F.softmax(logits, dim=-1)
            probs_flattened = probs.view(-1)
            
            # Determine number of top predictions to consider
            top_num = min(900, len(probs_flattened))
            
            # Get top-k values and indices
            topk_probs, topk_indices = torch.topk(probs_flattened, top_num)
            
            # Decode the top-k indices to get corresponding labels and boxes
            topk_labels = topk_indices % logits.shape[1]
            topk_boxes_indices = topk_indices // logits.shape[1]
            
            # Retrieve predictions using the top-k indices
            boxes = box_pred_i[topk_boxes_indices]
            masks = mask_i[topk_boxes_indices]
            scores = box_score_i[topk_boxes_indices] * topk_probs
            
            # Construct result for the current image
            result = Instances(img_size)
            result.pred_boxes = Boxes(boxes)
            result.scores = scores
            result.pred_classes = topk_labels
            result.pred_masks = masks
            results.append(result)

        return results