Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# Modified from github.com/facebook/SLIP | |
from collections import OrderedDict | |
import torch | |
from torch import nn | |
from functools import partial | |
from timm.models.layers import DropPath | |
from timm.models.vision_transformer import PatchEmbed, Mlp | |
class Attention(nn.Module): | |
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
# NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights | |
self.scale = qk_scale or head_dim ** -0.5 | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
def forward(self, x): | |
B, N, C = x.shape | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
class Block(nn.Module): | |
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., | |
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.norm1 = norm_layer(dim) | |
self.attn = Attention( | |
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) | |
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here | |
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) | |
def forward(self, x): | |
attn_x = self.attn(self.norm1(x)) | |
x = x + self.drop_path(attn_x) | |
x = x + self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
class VisionTransformer(nn.Module): | |
""" Vision Transformer | |
A PyTorch impl of : `An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale` | |
- https://arxiv.org/abs/2010.11929 | |
Includes distillation token & head support for `DeiT: Data-efficient Image Transformers` | |
- https://arxiv.org/abs/2012.12877 | |
""" | |
def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, | |
num_heads=12, mlp_ratio=4., qkv_bias=True, representation_size=None, distilled=False, | |
drop_rate=0., attn_drop_rate=0., drop_path_rate=0., embed_layer=PatchEmbed, norm_layer=None, | |
act_layer=None, weight_init=''): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
num_classes (int): number of classes for classification head | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set | |
distilled (bool): model includes a distillation token and head as in DeiT models | |
drop_rate (float): dropout rate | |
attn_drop_rate (float): attention dropout rate | |
drop_path_rate (float): stochastic depth rate | |
embed_layer (nn.Module): patch embedding layer | |
norm_layer: (nn.Module): normalization layer | |
weight_init: (str): weight init scheme | |
""" | |
super().__init__() | |
self.num_classes = num_classes | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 2 if distilled else 1 | |
norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) | |
act_layer = act_layer or nn.GELU | |
self.patch_embed = embed_layer( | |
img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else None | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
self.pos_drop = nn.Dropout(p=drop_rate) | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
self.blocks = nn.Sequential(*[ | |
Block( | |
dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, drop=drop_rate, | |
attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, act_layer=act_layer) | |
for i in range(depth)]) | |
self.norm = norm_layer(embed_dim) | |
# Representation layer | |
if representation_size and not distilled: | |
self.num_features = representation_size | |
self.pre_logits = nn.Sequential(OrderedDict([ | |
('fc', nn.Linear(embed_dim, representation_size)), | |
('act', nn.Tanh()) | |
])) | |
else: | |
self.pre_logits = nn.Identity() | |
# Classifier head(s) | |
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() | |
self.head_dist = None | |
if distilled: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def no_weight_decay(self): | |
return {'pos_embed', 'cls_token', 'dist_token'} | |
def get_classifier(self): | |
if self.dist_token is None: | |
return self.head | |
else: | |
return self.head, self.head_dist | |
def reset_classifier(self, num_classes, global_pool=''): | |
self.num_classes = num_classes | |
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() | |
if self.num_tokens == 2: | |
self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity() | |
def forward_featuremap(self, x): | |
x = self.patch_embed(x) | |
cls_token = self.cls_token.expand(x.shape[0], -1, -1) # stole cls_tokens impl from Phil Wang, thanks | |
if self.dist_token is None: | |
x = torch.cat((cls_token, x), dim=1) | |
else: | |
x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = self.pos_drop(x + self.pos_embed) | |
# apply Transformer blocks | |
for blk_idx, blk in enumerate(self.blocks): | |
x = blk(x) | |
return x | |
def forward_features(self, x): | |
x = self.forward_featuremap(x) | |
x = self.norm(x) | |
if self.dist_token is None: | |
return self.pre_logits(x[:, 0]) | |
else: | |
return x[:, 0], x[:, 1] | |
def forward(self, x): | |
x = self.forward_features(x) | |
if self.head_dist is not None: | |
x, x_dist = self.head(x[0]), self.head_dist(x[1]) # x must be a tuple | |
if self.training and not torch.jit.is_scripting(): | |
# during inference, return the average of both classifier predictions | |
return x, x_dist | |
else: | |
return (x + x_dist) / 2 | |
else: | |
x = self.head(x) | |
return x | |