try:
import detectron2
except:
import os
os.system('pip install git+https://github.com/facebookresearch/detectron2.git')
import os
os.system('pip install gradio==3.47.1')
import gradio as gr
import torch
from PIL import ImageDraw
from PIL import Image
import numpy as np
from torchvision.transforms import ToPILImage
import matplotlib.pyplot as plt
import cv2
from regionspot.modeling.regionspot import build_regionspot_model
from regionspot import RegionSpot_Predictor
from regionspot import SamAutomaticMaskGenerator
import ast
fdic = {
# "family": "Impact",
# "style": "italic",
"size": 15,
# "color": "yellow",
# "weight": "bold",
}
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
# Function to show points on an image
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels == 1]
neg_points = coords[labels == 0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
# Function to show bounding boxes on an image
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - x0, box[3] - y0
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor='none', lw=2))
def auto_show_box(box, label, ax):
x0, y0 = box[0], box[1]
w, h =box[2], box[3]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0,y0,f"{label}", fontdict=fdic)
def show_anns(image, anns, custom_vocabulary):
if anns == False:
plt.imshow(image)
ax = plt.gca()
ax.set_autoscale_on(False)
ax.imshow(image)
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
plt.imshow(image)
if len(anns) == 0:
return
sorted_anns = sorted(anns, key=(lambda x: x['area']), reverse=True)
ax = plt.gca()
ax.set_autoscale_on(False)
img = np.ones((sorted_anns[0]['segmentation'].shape[0], sorted_anns[0]['segmentation'].shape[1], 4))
img[:,:,3] = 0
for ann in sorted_anns:
l = custom_vocabulary[int(ann['pred_class'])]
if l != 'background':
m = ann['segmentation']
color_mask = np.concatenate([np.random.random(3), [0.35]])
img[m] = color_mask
b = ann['bbox']
auto_show_box(b,l, ax)
ax.imshow(img)
ax.axis('off')
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
def process_box(image, input_box, masks, mask_iou_score, class_score, class_index, custom_vocabulary):
# Extract class name and display image with masks and box
fig, ax = plt.subplots(figsize=(10, 10))
ax.imshow(image)
for idx in range(len(input_box)):
show_mask(masks[idx], ax)
show_box(input_box[idx], ax) # Assuming box_prompt contains all your boxes
# You might want to modify the text display for multiple classes as well
class_name = custom_vocabulary[int(class_index[idx])]
ax.text(input_box[idx][0], input_box[idx][1] - 10, class_name, color='white', fontsize=14, bbox=dict(facecolor='green', edgecolor='green', alpha=0.6))
ax.axis('off')
pic = plt.gcf()
pic.canvas.draw()
w,h = pic.canvas.get_width_height()
image = Image.frombytes('RGB', (w,h), pic.canvas.tostring_rgb())
return image
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
# Description
title = "
RegionSpot: Recognize Any Regions "
description_e = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
description_p = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
description_b = """ This is a demo on Github project [Recognize Any Regions](https://github.com/Surrey-UPLab/Recognize-Any-Regions). Welcome to give a star to it.
"""
examples = [["examples/dogs.jpg"], ["examples/fruits.jpg"], ["examples/flowers.jpg"],
["examples/000000190756.jpg"], ["examples/image.jpg"], ["examples/000000263860.jpg"],
["examples/000000298738.jpg"], ["examples/000000027620.jpg"], ["examples/000000112634.jpg"],
["examples/000000377814.jpg"], ["examples/000000516143.jpg"]]
default_example = examples[0]
css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"
def segment_sementic(image, text):
mask_threshold = 0.0
img = image
coor = np.nonzero(img["mask"])
coor[0].sort()
xmin = coor[0][0]
xmax = coor[0][-1]
coor[1].sort()
ymin = coor[1][0]
ymax = coor[1][-1]
input_box = np.array([[ymin, xmin, ymax, xmax]])
image = img["image"]
input_image = np.asarray(image)
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
# clip_input_size = 336
clip_input_size = 224
text = text.split(',')
custom_vocabulary = text
# Build and initialize the model
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
# Create predictor and set image
predictor = RegionSpot_Predictor(model.cuda())
predictor.set_image(input_image, clip_input_size=clip_input_size)
masks, mask_iou_score, class_score, class_index = predictor.predict(
point_coords=None,
point_labels=None,
box=input_box,
multimask_output=False,
mask_threshold = mask_threshold,
)
fig = process_box(input_image, input_box,masks, mask_iou_score, class_score, class_index, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def text_segment_sementic(image, text, conf_threshold, box_threshold, crop_n_layers, crop_nms_threshold):
mask_threshold = 0.0
image = image
input_image = np.asarray(image)
text = text.split(',')
textP = ['background']
text = textP + text
custom_vocabulary = text
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
clip_input_size = 336
# clip_input_size = 224
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
mask_generator = SamAutomaticMaskGenerator(model.cuda(),
# crop_thresh=iou_threshold,
box_thresh=conf_threshold,mask_threshold=mask_threshold,
box_nms_thresh=box_threshold, crop_n_layers=crop_n_layers, crop_nms_thresh= crop_nms_threshold)
masks = mask_generator.generate(input_image)
fig = show_anns(input_image, masks, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def point_segment_sementic(image, text, box_threshold, crop_nms_threshold):
global global_points
global global_point_label
global image_temp
mask_threshold = 0.0
input_image = image_temp
output_image = np.asarray(image)
ckpt_path = 'regionspot_bl_336.pth'
clip_type = 'CLIP_400M_Large_336'
clip_input_size = 336
# clip_input_size = 224
text = text.split(',')
textP = ['background']
text = textP + text
custom_vocabulary = text
model, msg = build_regionspot_model(is_training=False, image_size=clip_input_size, clip_type=clip_type, pretrain_ckpt=ckpt_path,
custom_vocabulary=custom_vocabulary)
mask_generator = SamAutomaticMaskGenerator(model.cuda(),
crop_thresh=0.0,
box_thresh=0.0,
mask_threshold=mask_threshold,
box_nms_thresh=box_threshold, crop_nms_thresh= crop_nms_threshold)
masks = mask_generator.generate_point(input_image,point=np.asarray(global_points), label=np.asarray(global_point_label))
fig = show_anns(output_image, masks, custom_vocabulary)
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
torch.cuda.empty_cache()
return fig
def get_points_with_draw(image, label, evt: gr.SelectData):
global global_points
global global_point_label
global image_temp
if global_point_label == []:
image_temp = np.asarray(image)
x, y = evt.index[0], evt.index[1]
point_radius, point_color = 15, (255, 255, 0) if label == 'Mask' else (255, 0, 255)
global_points.append([x, y])
global_point_label.append(1 if label == 'Mask' else 0)
draw = ImageDraw.Draw(image)
draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
return image
cond_img_p = gr.Image(label="Input with points", value="examples/dogs.jpg", type='pil')
cond_img_t = gr.Image(label="Input with text", value="examples/dogs.jpg", type='pil')
cond_img_b = gr.Image(label="Input with box", type="pil",tool='sketch')
# cond_img_b = gr.Image(label="Input with box", type="pil")
img_p = gr.Image(label="Input with points P", type='pil')
segm_img_p = gr.Image(label="Recognize Image with points", interactive=False, type='pil')
segm_img_t = gr.Image(label="Recognize Image with text", interactive=False, type='pil')
segm_img_b = gr.Image(label="Recognize Image with box", interactive=False, type='pil')
global_points = []
global_point_label = []
image_temp = np.array([])
with gr.Blocks(css=css, title='Region Spot') as demo:
with gr.Row():
with gr.Column(scale=1):
# Title
gr.Markdown(title)
with gr.Tab("Points mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_p.render()
with gr.Column(scale=1):
segm_img_p.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
add_or_remove = gr.Radio(["Mask", "Background"], value="Mask", label="Point_label (foreground/background)")
text_box_p = gr.Textbox(label="vocabulary", value="dog,cat")
with gr.Column():
segment_btn_p = gr.Button("Recognize with points prompt", variant='primary')
clear_btn_p = gr.Button("Clear", variant='secondary')
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
with gr.Accordion("Advanced options", open=True):
box_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='box threshold', info='box nms threshold')
crop_threshold_p = gr.Slider(0.0, 0.9, 0.7, step=0.05, label='crop threshold', info='crop nms threshold')
# Description
gr.Markdown(description_p)
cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)
segment_btn_p.click(point_segment_sementic,
inputs=[
cond_img_p,
text_box_p,
box_threshold_p,
crop_threshold_p,
],
outputs=[segm_img_p])
with gr.Tab("Text mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_t.render()
with gr.Column(scale=1):
segm_img_t.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
text_box_t = gr.Textbox(label="text prompt", value="dog,cat")
with gr.Column():
segment_btn_t = gr.Button("Recognize with text", variant='primary')
clear_btn_t = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
with gr.Accordion("Advanced options", open=True):
conf_threshold_t = gr.Slider(0.0, 0.9, 0.8, step=0.05, label='clip threshold', info='object confidence threshold of clip')
box_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='box threshold', info='box nms threshold')
crop_n_layers_t = gr.Slider(0, 3, 0, step=1, label='crop_n_layers', info='crop_n_layers of auto generator')
crop_threshold_t = gr.Slider(0.0, 0.9, 0.5, step=0.05, label='crop threshold', info='crop nms threshold')
# Description
gr.Markdown(description_e)
segment_btn_t.click(text_segment_sementic,
inputs=[
cond_img_t,
text_box_t,
conf_threshold_t,
box_threshold_t,
crop_n_layers_t,
crop_threshold_t
],
outputs=[segm_img_t])
with gr.Tab("Box mode"):
# Images
with gr.Row(variant="panel"):
with gr.Column(scale=1):
cond_img_b.render()
with gr.Column(scale=1):
segm_img_b.render()
# Submit & Clear
with gr.Row():
with gr.Column():
with gr.Row():
with gr.Column():
contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')
text_box_b = gr.Textbox(label="vocabulary", value="dog,cat")
with gr.Column():
segment_btn_b = gr.Button("Recognize with box", variant='primary')
clear_btn_b = gr.Button("Clear", variant="secondary")
gr.Markdown("Try some of the examples below")
gr.Examples(examples=examples,
inputs=[cond_img_t],
examples_per_page=18)
with gr.Column():
# Description
gr.Markdown(description_b)
segment_btn_b.click(segment_sementic,
inputs=[
cond_img_b,
text_box_b,
],
outputs=[segm_img_b])
def clear():
return None, None, None
def clear_text():
return None, None, None
clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p, text_box_p])
clear_btn_t.click(clear_text, outputs=[cond_img_t, segm_img_t, text_box_t])
clear_btn_b.click(clear_text, outputs=[cond_img_b, segm_img_b, text_box_b])
demo.queue()
demo.launch()