import numpy as np import torch import torch.nn.functional as F import torch.cuda.amp as amp from typing import Optional, Tuple from .util.transforms import ResizeLongestSide class RegionSpot_Predictor: def __init__( self, regionspot, ) -> None: super().__init__() self.regionspot = regionspot self.model = self.regionspot.sam self.transform = ResizeLongestSide(self.model.image_encoder.img_size) self.reset_image() def set_image( self, image: np.ndarray, image_format: str = "RGB", clip_input_size: int = 224, ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Arguments: image (np.ndarray): The image for calculating masks. Expects an image in HWC uint8 format, with pixel values in [0, 255]. image_format (str): The color format of the image, in ['RGB', 'BGR']. """ assert image_format in [ "RGB", "BGR", ], f"image_format must be in ['RGB', 'BGR'], is {image_format}." if image_format != self.model.image_format: image = image[..., ::-1] # import ipdb; ipdb.set_trace() #resize to 224x224 self.resized_image = self.resize_norm(image, target_size=(clip_input_size, clip_input_size)) # Transform the image to the form expected by the model input_image = self.transform.apply_image(image) input_image_torch = torch.as_tensor(input_image, device=self.device) input_image_torch = input_image_torch.permute(2, 0, 1).contiguous()[None, :, :, :] # print(image.shape) self.set_torch_image(input_image_torch, image.shape[:2]) @torch.no_grad() def set_torch_image( self, transformed_image: torch.Tensor, original_image_size: Tuple[int, ...], ) -> None: """ Calculates the image embeddings for the provided image, allowing masks to be predicted with the 'predict' method. Expects the input image to be already transformed to the format expected by the model. Arguments: transformed_image (torch.Tensor): The input image, with shape 1x3xHxW, which has been transformed with ResizeLongestSide. original_image_size (tuple(int, int)): The size of the image before transformation, in (H, W) format. """ assert ( len(transformed_image.shape) == 4 and transformed_image.shape[1] == 3 and max(*transformed_image.shape[2:]) == self.model.image_encoder.img_size ), f"set_torch_image input must be BCHW with long side {self.model.image_encoder.img_size}." self.reset_image() self.original_size = original_image_size self.input_size = tuple(transformed_image.shape[-2:]) input_image = self.model.preprocess(transformed_image) self.features = self.model.image_encoder(input_image) # print(self.resized_image.shape) self.clip_features = self.regionspot.clip_model.encode_image_featuremap(self.resized_image.cuda()).detach() self.is_image_set = True def predict( self, point_coords: Optional[np.ndarray] = None, point_labels: Optional[np.ndarray] = None, box: Optional[np.ndarray] = None, mask_input: Optional[np.ndarray] = None, multimask_output: bool = True, return_logits: bool = False, ########################### mask_threshold = 0.0, ########################### ) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Predict masks for the given input prompts, using the currently set image. Arguments: point_coords (np.ndarray or None): A Nx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (np.ndarray or None): A length N array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. box (np.ndarray or None): A length 4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form 1xHxW, where for SAM, H=W=256. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (np.ndarray): The output masks in CxHxW format, where C is the number of masks, and (H, W) is the original image size. (np.ndarray): An array of length C containing the model's predictions for the quality of each mask. (np.ndarray): An array of shape CxHxW, where C is the number of masks and H=W=256. These low resolution logits can be passed to a subsequent iteration as mask input. """ if not self.is_image_set: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") # Transform input prompts coords_torch, labels_torch, box_torch, mask_input_torch = None, None, None, None if point_coords is not None: assert ( point_labels is not None ), "point_labels must be supplied if point_coords is supplied." point_coords = self.transform.apply_coords(point_coords, self.original_size) coords_torch = torch.as_tensor(point_coords, dtype=torch.float, device=self.device) labels_torch = torch.as_tensor(point_labels, dtype=torch.int, device=self.device) coords_torch, labels_torch = coords_torch[None, :, :], labels_torch[None, :] if box is not None: box = self.transform.apply_boxes(box, self.original_size) box_torch = torch.as_tensor(box, dtype=torch.float, device=self.device) # box_torch = box_torch[None, :] if mask_input is not None: mask_input_torch = torch.as_tensor(mask_input, dtype=torch.float, device=self.device) mask_input_torch = mask_input_torch[None, :, :, :] masks, iou_predictions, low_res_masks, max_values, max_index = self.predict_torch( coords_torch, labels_torch, box_torch, mask_input_torch, multimask_output, return_logits=return_logits, ############################## mask_threshold = mask_threshold, ################################ ) masks_np = masks.detach().cpu().numpy() iou_predictions_np = iou_predictions.detach().cpu().numpy() low_res_masks_np = low_res_masks.detach().cpu().numpy() max_values = max_values.detach().cpu().numpy() max_index = max_index.detach().cpu().numpy() return masks_np, iou_predictions_np, max_values, max_index @torch.no_grad() def predict_torch( self, point_coords: Optional[torch.Tensor], point_labels: Optional[torch.Tensor], boxes: Optional[torch.Tensor] = None, mask_input: Optional[torch.Tensor] = None, multimask_output: bool = True, return_logits: bool = False, ########################### mask_threshold = 0.0, ########################### ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]: """ Predict masks for the given input prompts, using the currently set image. Input prompts are batched torch tensors and are expected to already be transformed to the input frame using ResizeLongestSide. Arguments: point_coords (torch.Tensor or None): A BxNx2 array of point prompts to the model. Each point is in (X,Y) in pixels. point_labels (torch.Tensor or None): A BxN array of labels for the point prompts. 1 indicates a foreground point and 0 indicates a background point. boxes (np.ndarray or None): A Bx4 array given a box prompt to the model, in XYXY format. mask_input (np.ndarray): A low resolution mask input to the model, typically coming from a previous prediction iteration. Has form Bx1xHxW, where for SAM, H=W=256. Masks returned by a previous iteration of the predict method do not need further transformation. multimask_output (bool): If true, the model will return three masks. For ambiguous input prompts (such as a single click), this will often produce better masks than a single prediction. If only a single mask is needed, the model's predicted quality score can be used to select the best mask. For non-ambiguous prompts, such as multiple input prompts, multimask_output=False can give better results. return_logits (bool): If true, returns un-thresholded masks logits instead of a binary mask. Returns: (torch.Tensor): The output masks in BxCxHxW format, where C is the number of masks, and (H, W) is the original image size. (torch.Tensor): An array of shape BxC containing the model's predictions for the quality of each mask. (torch.Tensor): An array of shape BxCxHxW, where C is the number of masks and H=W=256. These low res logits can be passed to a subsequent iteration as mask input. """ if not self.is_image_set: raise RuntimeError("An image must be set with .set_image(...) before mask prediction.") if point_coords is not None: points = (point_coords, point_labels) else: points = None # Embed prompts sparse_embeddings, dense_embeddings = self.model.prompt_encoder( points=points, boxes=boxes, masks=mask_input, ) # Predict masks low_res_masks, iou_predictions, mask_token = self.model.mask_decoder( image_embeddings=self.features, image_pe=self.model.prompt_encoder.get_dense_pe(), sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, ) ########################## mask_token = mask_token.reshape(-1,1,256) ########################## #Predict masks class with amp.autocast(enabled=True): with torch.no_grad(): logits_per_image = self.regionspot.forward_inference(self.clip_features, mask_token.cuda(), self.resized_image.cuda()) # print(logits_per_image.shape) #get class and score # probs_per_image = F.softmax(logits_per_image[0], dim=-1)#.cpu().numpy() # n_token c probs_per_image =logits_per_image[0].sigmoid() max_values, max_index = torch.max(probs_per_image, dim=-1) masks = self.model.postprocess_masks(low_res_masks, self.input_size, self.original_size) # if not return_logits: # masks = masks > self.model.mask_threshold ##################### if not return_logits: masks = masks > mask_threshold ##################### return masks, iou_predictions, low_res_masks, max_values, max_index def get_image_embedding(self) -> torch.Tensor: """ Returns the image embeddings for the currently set image, with shape 1xCxHxW, where C is the embedding dimension and (H,W) are the embedding spatial dimension of SAM (typically C=256, H=W=64). """ if not self.is_image_set: raise RuntimeError( "An image must be set with .set_image(...) to generate an embedding." ) assert self.features is not None, "Features must exist if an image has been set." return self.features def resize_norm(self, image, target_size=(224, 224)): # Convert the numpy image to a torch tensor and ensure it is in CxHxW format image = torch.from_numpy(image).permute(2, 0, 1).float() / 255.0 # Resize resized_image = F.interpolate(image.unsqueeze(0), size=target_size, mode='bilinear', align_corners=False).squeeze(0) # Apply normalization normalize_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073]).unsqueeze(1).unsqueeze(2) normalize_std = torch.tensor([0.26862954, 0.26130258, 0.27577711]).unsqueeze(1).unsqueeze(2) resized_image = (resized_image - normalize_mean) / normalize_std return resized_image.unsqueeze(0) @property def device(self) -> torch.device: return self.model.device def reset_image(self) -> None: """Resets the currently set image.""" self.is_image_set = False self.features = None self.orig_h = None self.orig_w = None self.input_h = None self.input_w = None