# ======================================== # Modified by Shoufa Chen # ======================================== # Modified by Peize Sun, Rufeng Zhang # Contact: {sunpeize, cxrfzhang}@foxmail.com # # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import copy import logging import numpy as np import torch import os from detectron2.data import detection_utils as utils from detectron2.data import transforms as T __all__ = ["RegionSpotDatasetMapper"] def build_transform_gen(cfg, is_train): """ Create a list of :class:`TransformGen` from config. Returns: list[TransformGen] """ if is_train: min_size = cfg.INPUT.MIN_SIZE_TRAIN max_size = cfg.INPUT.MAX_SIZE_TRAIN sample_style = cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING else: min_size = cfg.INPUT.MIN_SIZE_TEST max_size = cfg.INPUT.MAX_SIZE_TEST sample_style = "choice" if sample_style == "range": assert len(min_size) == 2, "more than 2 ({}) min_size(s) are provided for ranges".format(len(min_size)) logger = logging.getLogger(__name__) tfm_gens = [] if is_train: tfm_gens.append(T.RandomFlip()) # ResizeShortestEdge tfm_gens.append(T.ResizeShortestEdge(min_size, max_size, sample_style)) if is_train: logger.info("TransformGens used in training: " + str(tfm_gens)) return tfm_gens class RegionSpotDatasetMapper: """ A callable which takes a dataset dict in Detectron2 Dataset format, and map it into a format used by DiffusionDet. The callable currently does the following: 1. Read the image from "file_name" 2. Applies geometric transforms to the image and annotation 3. Find and applies suitable cropping to the image and annotation 4. Prepare image and annotation to Tensors """ def __init__(self, cfg, is_train=True): if cfg.INPUT.CROP.ENABLED and is_train: self.crop_gen = [ T.ResizeShortestEdge([400, 500, 600], sample_style="choice"), T.RandomCrop(cfg.INPUT.CROP.TYPE, cfg.INPUT.CROP.SIZE), ] else: self.crop_gen = None self.tfm_gens = build_transform_gen(cfg, is_train) logging.getLogger(__name__).info( "Full TransformGens used in training: {}, crop: {}".format(str(self.tfm_gens), str(self.crop_gen)) ) self.img_format = cfg.INPUT.FORMAT self.is_train = is_train # if self.is_train: # for dataset_name in cfg.DATASETS.TRAIN: # if dataset_name.startswith("coco"): self.mask_tokens_dir = os.path.join('./datasets/datasets_mask_tokens_vit_b/') def __call__(self, dataset_dict): """ Args: dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format. Returns: dict: a format that builtin models in detectron2 accept """ dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below image = utils.read_image(dataset_dict["file_name"], format=self.img_format) # utils.check_image_size(dataset_dict, image) # #get mask token and responsed label image_id = dataset_dict["image_id"] dataset_name = dataset_dict["file_name"].split('/')[1] #datasets/coco/train2017/000000566174.jpg #read pth pth_file = os.path.join(self.mask_tokens_dir, os.path.join(dataset_name, str(image_id)+'.pth')) offline_token = torch.load(pth_file) # if self.crop_gen is None: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: if np.random.rand() > 0.5: image, transforms = T.apply_transform_gens(self.tfm_gens, image) else: image, transforms = T.apply_transform_gens( self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image ) image_shape = image.shape[:2] # h, w # Pytorch's dataloader is efficient on torch.Tensor due to shared-memory, # but not efficient on large generic data structures due to the use of pickle & mp.Queue. # Therefore it's important to use torch.Tensor. dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1))) dataset_dict["dataset_name"] = dataset_name dataset_dict["extra_info"] = offline_token if not self.is_train: # USER: Modify this if you want to keep them for some reason. dataset_dict.pop("annotations", None) return dataset_dict if "annotations" in dataset_dict: # USER: Modify this if you want to keep them for some reason. for anno in dataset_dict["annotations"]: anno.pop("segmentation", None) anno.pop("keypoints", None) # USER: Implement additional transformations if you have other types of data annos = [ utils.transform_instance_annotations(obj, transforms, image_shape) for obj in dataset_dict.pop("annotations") if obj.get("iscrowd", 0) == 0 ] instances = utils.annotations_to_instances(annos, image_shape) dataset_dict["instances"] = utils.filter_empty_instances(instances) return dataset_dict