Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import MarianMTModel, AutoModelForSeq2SeqLM, AutoTokenizer, GPTNeoForCausalLM, GPT2Tokenizer
|
2 |
+
import gradio as gr
|
3 |
+
import requests
|
4 |
+
import io
|
5 |
+
from PIL import Image
|
6 |
+
import os # Import os to access environment variables
|
7 |
+
|
8 |
+
# Load MarianMT model and tokenizer for Tamil to English translation
|
9 |
+
model_name = "Helsinki-NLP/opus-mt-mul-en"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
11 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
12 |
+
|
13 |
+
# Load GPT-Neo model and tokenizer
|
14 |
+
gpt_neo_model_name = "EleutherAI/gpt-neo-125M"
|
15 |
+
gpt_neo_model = GPTNeoForCausalLM.from_pretrained(gpt_neo_model_name)
|
16 |
+
gpt_neo_tokenizer = GPT2Tokenizer.from_pretrained(gpt_neo_model_name)
|
17 |
+
|
18 |
+
# Retrieve the API URL and headers for Flux.1 from environment variables
|
19 |
+
API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
|
20 |
+
headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_KEY')}"} # Use the environment variable
|
21 |
+
|
22 |
+
def generate_image_from_text(english_text):
|
23 |
+
payload = {"inputs": english_text}
|
24 |
+
response = requests.post(API_URL, headers=headers, json=payload)
|
25 |
+
|
26 |
+
if response.status_code == 200:
|
27 |
+
image_bytes = response.content
|
28 |
+
image = Image.open(io.BytesIO(image_bytes))
|
29 |
+
return image
|
30 |
+
else:
|
31 |
+
return None # Handle error appropriately
|
32 |
+
|
33 |
+
def translate_tamil_to_english(tamil_text):
|
34 |
+
# Tokenize input and generate translation
|
35 |
+
inputs = tokenizer(tamil_text, return_tensors="pt", padding=True)
|
36 |
+
translated_tokens = model.generate(**inputs)
|
37 |
+
translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
|
38 |
+
return translated_text
|
39 |
+
|
40 |
+
def generate_creative_text(english_text):
|
41 |
+
input_ids = gpt_neo_tokenizer.encode(english_text, return_tensors='pt')
|
42 |
+
output = gpt_neo_model.generate(input_ids, max_length=150, num_return_sequences=1)
|
43 |
+
return gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
|
44 |
+
|
45 |
+
def process_input(tamil_text):
|
46 |
+
# Step 1: Translate Tamil to English
|
47 |
+
translated_text = translate_tamil_to_english(tamil_text)
|
48 |
+
|
49 |
+
# Step 2: Generate Image from Translated English Text
|
50 |
+
image = generate_image_from_text(translated_text)
|
51 |
+
|
52 |
+
# Step 3: Generate Creative Text
|
53 |
+
creative_text = generate_creative_text(translated_text)
|
54 |
+
|
55 |
+
# Return results (translated text, image, and creative text)
|
56 |
+
return translated_text, image, creative_text
|
57 |
+
|
58 |
+
# Create a Gradio interface with input and output components
|
59 |
+
interface = gr.Interface(
|
60 |
+
fn=process_input,
|
61 |
+
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text..."),
|
62 |
+
outputs=[gr.Textbox(label="Translated Text (English)"),
|
63 |
+
gr.Image(label="Generated Image"),
|
64 |
+
gr.Textbox(label="Creative Text")],
|
65 |
+
title="Tamil to Creative Text & Image Generator",
|
66 |
+
description="Enter Tamil text to translate, generate an image, and produce creative content."
|
67 |
+
)
|
68 |
+
|
69 |
+
# Launch the Gradio app
|
70 |
+
interface.launch(debug=True)
|