black-sheep-12 commited on
Commit
18e4553
·
verified ·
1 Parent(s): cec9084

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +70 -0
app.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import MarianMTModel, AutoModelForSeq2SeqLM, AutoTokenizer, GPTNeoForCausalLM, GPT2Tokenizer
2
+ import gradio as gr
3
+ import requests
4
+ import io
5
+ from PIL import Image
6
+ import os # Import os to access environment variables
7
+
8
+ # Load MarianMT model and tokenizer for Tamil to English translation
9
+ model_name = "Helsinki-NLP/opus-mt-mul-en"
10
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
11
+ model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
12
+
13
+ # Load GPT-Neo model and tokenizer
14
+ gpt_neo_model_name = "EleutherAI/gpt-neo-125M"
15
+ gpt_neo_model = GPTNeoForCausalLM.from_pretrained(gpt_neo_model_name)
16
+ gpt_neo_tokenizer = GPT2Tokenizer.from_pretrained(gpt_neo_model_name)
17
+
18
+ # Retrieve the API URL and headers for Flux.1 from environment variables
19
+ API_URL = "https://api-inference.huggingface.co/models/black-forest-labs/FLUX.1-dev"
20
+ headers = {"Authorization": f"Bearer {os.environ.get('HUGGINGFACE_API_KEY')}"} # Use the environment variable
21
+
22
+ def generate_image_from_text(english_text):
23
+ payload = {"inputs": english_text}
24
+ response = requests.post(API_URL, headers=headers, json=payload)
25
+
26
+ if response.status_code == 200:
27
+ image_bytes = response.content
28
+ image = Image.open(io.BytesIO(image_bytes))
29
+ return image
30
+ else:
31
+ return None # Handle error appropriately
32
+
33
+ def translate_tamil_to_english(tamil_text):
34
+ # Tokenize input and generate translation
35
+ inputs = tokenizer(tamil_text, return_tensors="pt", padding=True)
36
+ translated_tokens = model.generate(**inputs)
37
+ translated_text = tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
38
+ return translated_text
39
+
40
+ def generate_creative_text(english_text):
41
+ input_ids = gpt_neo_tokenizer.encode(english_text, return_tensors='pt')
42
+ output = gpt_neo_model.generate(input_ids, max_length=150, num_return_sequences=1)
43
+ return gpt_neo_tokenizer.decode(output[0], skip_special_tokens=True)
44
+
45
+ def process_input(tamil_text):
46
+ # Step 1: Translate Tamil to English
47
+ translated_text = translate_tamil_to_english(tamil_text)
48
+
49
+ # Step 2: Generate Image from Translated English Text
50
+ image = generate_image_from_text(translated_text)
51
+
52
+ # Step 3: Generate Creative Text
53
+ creative_text = generate_creative_text(translated_text)
54
+
55
+ # Return results (translated text, image, and creative text)
56
+ return translated_text, image, creative_text
57
+
58
+ # Create a Gradio interface with input and output components
59
+ interface = gr.Interface(
60
+ fn=process_input,
61
+ inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text..."),
62
+ outputs=[gr.Textbox(label="Translated Text (English)"),
63
+ gr.Image(label="Generated Image"),
64
+ gr.Textbox(label="Creative Text")],
65
+ title="Tamil to Creative Text & Image Generator",
66
+ description="Enter Tamil text to translate, generate an image, and produce creative content."
67
+ )
68
+
69
+ # Launch the Gradio app
70
+ interface.launch(debug=True)