import uvicorn from fastapi import FastAPI, HTTPException from fastapi.middleware.cors import CORSMiddleware from contextlib import asynccontextmanager from sse_starlette import EventSourceResponse from typing import List, Tuple from llmtuner.extras.misc import torch_gc from llmtuner.chat import ChatModel from llmtuner.api.protocol import ( Role, Finish, ModelCard, ModelList, ChatMessage, DeltaMessage, ChatCompletionRequest, ChatCompletionResponse, ChatCompletionStreamResponse, ChatCompletionResponseChoice, ChatCompletionResponseStreamChoice, ChatCompletionResponseUsage ) @asynccontextmanager async def lifespan(app: FastAPI): # collects GPU memory yield torch_gc() def create_app(chat_model: ChatModel) -> FastAPI: app = FastAPI(lifespan=lifespan) app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) @app.get("/v1/models", response_model=ModelList) async def list_models(): model_card = ModelCard(id="gpt-3.5-turbo") return ModelList(data=[model_card]) @app.post("/v1/chat/completions", response_model=ChatCompletionResponse) async def create_chat_completion(request: ChatCompletionRequest): if len(request.messages) < 1 or request.messages[-1].role != Role.USER: raise HTTPException(status_code=400, detail="Invalid request") query = request.messages[-1].content prev_messages = request.messages[:-1] if len(prev_messages) > 0 and prev_messages[0].role == Role.SYSTEM: system = prev_messages.pop(0).content else: system = None history = [] if len(prev_messages) % 2 == 0: for i in range(0, len(prev_messages), 2): if prev_messages[i].role == Role.USER and prev_messages[i+1].role == Role.ASSISTANT: history.append([prev_messages[i].content, prev_messages[i+1].content]) if request.stream: generate = predict(query, history, system, request) return EventSourceResponse(generate, media_type="text/event-stream") response, (prompt_length, response_length) = chat_model.chat( query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens ) usage = ChatCompletionResponseUsage( prompt_tokens=prompt_length, completion_tokens=response_length, total_tokens=prompt_length+response_length ) choice_data = ChatCompletionResponseChoice( index=0, message=ChatMessage(role=Role.ASSISTANT, content=response), finish_reason=Finish.STOP ) return ChatCompletionResponse(model=request.model, choices=[choice_data], usage=usage) async def predict(query: str, history: List[Tuple[str, str]], system: str, request: ChatCompletionRequest): choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(role=Role.ASSISTANT), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield chunk.json(exclude_unset=True, ensure_ascii=False) for new_text in chat_model.stream_chat( query, history, system, temperature=request.temperature, top_p=request.top_p, max_new_tokens=request.max_tokens ): if len(new_text) == 0: continue choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(content=new_text), finish_reason=None ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield chunk.json(exclude_unset=True, ensure_ascii=False) choice_data = ChatCompletionResponseStreamChoice( index=0, delta=DeltaMessage(), finish_reason=Finish.STOP ) chunk = ChatCompletionStreamResponse(model=request.model, choices=[choice_data]) yield chunk.json(exclude_unset=True, ensure_ascii=False) yield "[DONE]" return app if __name__ == "__main__": chat_model = ChatModel() app = create_app(chat_model) uvicorn.run(app, host="0.0.0.0", port=8000, workers=1)