# coding=utf-8 # Calculates the flops of pre-trained models. # Usage: python cal_flops.py --model_name_or_path path_to_model --batch_size 1 --seq_length 512 # Inspired by: https://www.deepspeed.ai/tutorials/flops-profiler/ import fire import torch from typing import Optional from deepspeed.accelerator import get_accelerator from deepspeed.profiling.flops_profiler import get_model_profile from llmtuner import ChatModel def calculate( model_name_or_path: str, batch_size: Optional[int] = 1, seq_length: Optional[int] = 256, flash_attn: Optional[bool] = False ): with get_accelerator().device(0): chat_model = ChatModel(dict( model_name_or_path=model_name_or_path, template="vanilla", flash_attn=flash_attn )) fake_input = torch.ones((batch_size, seq_length), dtype=torch.long, device=chat_model.model.device) input_dict = { "input_ids": fake_input, "labels": fake_input.clone() } flops, macs, params = get_model_profile( chat_model.model, kwargs=input_dict, print_profile=True, detailed=True ) print("FLOPS:", flops) print("MACs:", macs) print("Params:", params) if __name__ == "__main__": fire.Fire(calculate)