Spaces:
Sleeping
Sleeping
File size: 8,099 Bytes
41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa 442ad61 41039aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
import torch
import spaces
from transformers import (
AutoProcessor,
BitsAndBytesConfig,
LlavaForConditionalGeneration,
)
from PIL import Image
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoModelForCausalLM, CodeGenTokenizerFast as Tokenizer
from dotenv import load_dotenv
import os
# Import Supabase functions
from db_client import get_user_history, update_user_history, delete_user_history
# Add these imports
from datetime import datetime
import pytz
load_dotenv()
# Add TESTING variable
TESTING = False # You can change this to False when not testing
IS_LOGGED_IN = True
USER_ID = "jeremie.feron@gmail.com"
# Hugging Face model id
model_id = "blanchon/pixtral-nutrition-2"
# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
)
# Modify the model and processor initialization
if TESTING:
model_id = "vikhyatk/moondream1"
model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
processor = Tokenizer.from_pretrained(model_id)
else:
model = LlavaForConditionalGeneration.from_pretrained(
model_id,
device_map="auto",
torch_dtype=torch.bfloat16,
quantization_config=bnb_config,
)
processor = AutoProcessor.from_pretrained(model_id)
# Set the chat template for the tokenizer
processor.chat_template = """
{%- for message in messages %}
{%- if message.role == "user" %}
<s>[INST]
{%- for item in message.content %}
{%- if item.type == "text" %}
{{ item.text }}
{%- elif item.type == "image" %}
\n[IMG]
{%- endif %}
{%- endfor %}
[/INST]
{%- elif message.role == "assistant" %}
{%- for item in message.content %}
{%- if item.type == "text" %}
{{ item.text }}
{%- endif %}
{%- endfor %}
</s>
{%- endif %}
{%- endfor %}
""".replace(' ', "")
processor.tokenizer.pad_token = processor.tokenizer.eos_token
@spaces.GPU
def bot_streaming(chatbot, image_input, max_new_tokens=250):
# Preprocess inputs
messages = get_user_history(USER_ID)
images = []
text_input = chatbot[-1][0]
# Get current time in Paris timezone
paris_tz = pytz.timezone('Europe/Paris')
current_time = datetime.now(paris_tz).strftime("%I:%M%p")
if text_input != "":
text_input = f"Current time: {current_time}. You are a nutrition expert. Identify the food/ingredients in this image. Is this a healthy meal? Can you think of how to improve it?"
else:
text_input = f"Current time: {current_time}. You are a nutrition expert. Identify the food/ingredients in this image. Is this a healthy meal? Can you think of how to improve it?"
# Add current message
if image_input is not None:
# Check if image_input is already a PIL Image
if isinstance(image_input, Image.Image):
image = image_input.convert("RGB")
else:
image = Image.fromarray(image_input).convert("RGB")
images.append(image)
messages.append({
"role": "user",
"content": [{"type": "text", "text": text_input}, {"type": "image"}]
})
else:
messages.append({
"role": "user",
"content": [{"type": "text", "text": text_input}]
})
# Apply chat template
texts = processor.apply_chat_template(messages)
# Process inputs
if not images:
inputs = processor(text=texts, return_tensors="pt").to("cuda")
else:
inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")
streamer = TextIteratorStreamer(
processor.tokenizer, skip_special_tokens=True, skip_prompt=True
)
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)
thread = Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
response = ""
for new_text in streamer:
response += new_text
chatbot[-1][1] = response
yield chatbot
thread.join()
# Debug output
print('*'*60)
print('*'*60)
print('BOT_STREAMING_CONV_START')
for i, (request, answer) in enumerate(chatbot[:-1], 1):
print(f'Q{i}:\n {request}')
print(f'A{i}:\n {answer}')
print('New_Q:\n', text_input)
print('New_A:\n', response)
print('BOT_STREAMING_CONV_END')
if IS_LOGGED_IN:
new_history = messages + [{"role": "assistant", "content": [{"type": "text", "text": response}]}]
update_user_history(USER_ID, new_history)
# Define the HTML content for the header
html = f"""
<p align="center" style="font-size: 2.5em; line-height: 1;">
<span style="display: inline-block; vertical-align: middle;">🍽️</span>
<span style="display: inline-block; vertical-align: middle;">PixDiet</span>
</p>
<center><font size=3><b>PixDiet</b> is your AI nutrition expert. Upload an image of your meal and chat with our AI to get personalized advice on your diet, meal composition, and ways to improve your nutrition.</font></center>
<div style="display: flex; justify-content: center; align-items: center; margin-top: 20px;">
<img src="https://zozs97eh0bkqexza.public.blob.vercel-storage.com/alan-VD7bRf1rKuEBL6EDAjw0eLGVodhoh8.png" alt="Alan AI Logo" style="height: 50px; margin-right: 20px;">
<img src="https://seeklogo.com/images/M/mistral-ai-icon-logo-B3319DCA6B-seeklogo.com.png" alt="Mistral AI Logo" style="height: 50px;">
</div>
"""
# Define LaTeX delimiters
latex_delimiters_set = [
{"left": "\\(", "right": "\\)", "display": False},
{"left": "\\begin{equation}", "right": "\\end{equation}", "display": True},
{"left": "\\begin{align}", "right": "\\end{align}", "display": True},
{"left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True},
{"left": "\\begin{gather}", "right": "\\end{gather}", "display": True},
{"left": "\\begin{CD}", "right": "\\end{CD}", "display": True},
{"left": "\\[", "right": "\\]", "display": True}
]
# Create the Gradio interface
with gr.Blocks(title="PixDiet", theme=gr.themes.Ocean()) as demo:
gr.HTML(html)
with gr.Row():
with gr.Column(scale=3):
image_input = gr.Image(label="Upload your meal image", height=350, type="pil")
gr.Examples(
examples=[
["./examples/mistral_breakfast.jpeg", ""],
["./examples/mistral_desert.jpeg", ""],
["./examples/mistral_snacks.jpeg", ""],
["./examples/mistral_pasta.jpeg", ""],
],
inputs=[image_input, gr.Textbox(visible=False)]
)
with gr.Column(scale=7):
chatbot = gr.Chatbot(label="Chat with PixDiet", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
text_input = gr.Textbox(label="Ask about your meal", placeholder="(Optional) Enter your message here...", lines=1, container=False)
with gr.Row():
send_btn = gr.Button("Send", variant="primary")
clear_btn = gr.Button("Delete my historic", variant="huggingface")
def submit_chat(chatbot, text_input):
response = ''
chatbot.append((text_input, response))
return chatbot, ''
def clear_chat():
delete_user_history(USER_ID)
return [], None, ""
send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(
bot_streaming, [chatbot, image_input], chatbot
)
submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(
bot_streaming, [chatbot, image_input], chatbot
)
clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])
if __name__ == "__main__":
demo.launch(debug=False, share=False, show_api=False)
|