File size: 8,099 Bytes
41039aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442ad61
 
 
41039aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442ad61
 
 
 
41039aa
442ad61
 
 
41039aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442ad61
41039aa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
442ad61
 
 
 
41039aa
 
 
 
 
442ad61
41039aa
 
442ad61
41039aa
 
 
 
 
 
 
 
 
 
 
 
 
442ad61
 
 
41039aa
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
import torch
import spaces
from transformers import (
    AutoProcessor,
    BitsAndBytesConfig,
    LlavaForConditionalGeneration,
)
from PIL import Image
import gradio as gr
from threading import Thread
from transformers import TextIteratorStreamer, AutoModelForCausalLM, CodeGenTokenizerFast as Tokenizer
from dotenv import load_dotenv
import os
# Import Supabase functions
from db_client import get_user_history, update_user_history, delete_user_history
# Add these imports
from datetime import datetime
import pytz

load_dotenv()

# Add TESTING variable
TESTING = False  # You can change this to False when not testing

IS_LOGGED_IN = True
USER_ID = "jeremie.feron@gmail.com"

# Hugging Face model id
model_id = "blanchon/pixtral-nutrition-2"

# BitsAndBytesConfig int-4 config
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16,
)

# Modify the model and processor initialization
if TESTING:
    model_id = "vikhyatk/moondream1"
    model = AutoModelForCausalLM.from_pretrained(model_id, trust_remote_code=True)
    processor = Tokenizer.from_pretrained(model_id)
else:
    model = LlavaForConditionalGeneration.from_pretrained(
        model_id,
        device_map="auto",
        torch_dtype=torch.bfloat16,
        quantization_config=bnb_config,
    )
    processor = AutoProcessor.from_pretrained(model_id)

# Set the chat template for the tokenizer
processor.chat_template = """
{%- for message in messages %}
    {%- if message.role == "user" %}
        <s>[INST]
        {%- for item in message.content %}
            {%- if item.type == "text" %}
                {{ item.text }}
            {%- elif item.type == "image" %}
                \n[IMG]
            {%- endif %}
        {%- endfor %}
        [/INST]
    {%- elif message.role == "assistant" %}
        {%- for item in message.content %}
            {%- if item.type == "text" %}
                {{ item.text }}
            {%- endif %}
        {%- endfor %}
        </s>
    {%- endif %}
{%- endfor %}
""".replace('    ', "")

processor.tokenizer.pad_token = processor.tokenizer.eos_token

@spaces.GPU
def bot_streaming(chatbot, image_input, max_new_tokens=250):
    # Preprocess inputs
    messages = get_user_history(USER_ID)
    images = []
    text_input = chatbot[-1][0]

    # Get current time in Paris timezone
    paris_tz = pytz.timezone('Europe/Paris')
    current_time = datetime.now(paris_tz).strftime("%I:%M%p")

    if text_input != "":
        text_input = f"Current time: {current_time}. You are a nutrition expert. Identify the food/ingredients in this image. Is this a healthy meal? Can you think of how to improve it?"
    else:
        text_input = f"Current time: {current_time}. You are a nutrition expert. Identify the food/ingredients in this image. Is this a healthy meal? Can you think of how to improve it?"

    # Add current message
    if image_input is not None:
        # Check if image_input is already a PIL Image
        if isinstance(image_input, Image.Image):
            image = image_input.convert("RGB")
        else:
            image = Image.fromarray(image_input).convert("RGB")
        images.append(image)
        messages.append({
            "role": "user",
            "content": [{"type": "text", "text": text_input}, {"type": "image"}]
        })
    else:
        messages.append({
            "role": "user",
            "content": [{"type": "text", "text": text_input}]
        })

    # Apply chat template
    texts = processor.apply_chat_template(messages)

    # Process inputs
    if not images:
        inputs = processor(text=texts, return_tensors="pt").to("cuda")
    else:
        inputs = processor(text=texts, images=images, return_tensors="pt").to("cuda")

    streamer = TextIteratorStreamer(
        processor.tokenizer, skip_special_tokens=True, skip_prompt=True
    )

    generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=max_new_tokens)

    thread = Thread(target=model.generate, kwargs=generation_kwargs)
    thread.start()
    
    response = ""
    for new_text in streamer:
        response += new_text
        chatbot[-1][1] = response
        yield chatbot

    thread.join()

    # Debug output
    print('*'*60)
    print('*'*60)
    print('BOT_STREAMING_CONV_START')
    for i, (request, answer) in enumerate(chatbot[:-1], 1):
        print(f'Q{i}:\n {request}')
        print(f'A{i}:\n {answer}')
    print('New_Q:\n', text_input)
    print('New_A:\n', response)
    print('BOT_STREAMING_CONV_END')

    
    if IS_LOGGED_IN:
        new_history = messages + [{"role": "assistant", "content": [{"type": "text", "text": response}]}]
        update_user_history(USER_ID, new_history)

# Define the HTML content for the header
html = f"""
<p align="center" style="font-size: 2.5em; line-height: 1;">
    <span style="display: inline-block; vertical-align: middle;">🍽️</span>
    <span style="display: inline-block; vertical-align: middle;">PixDiet</span>
</p>
<center><font size=3><b>PixDiet</b> is your AI nutrition expert. Upload an image of your meal and chat with our AI to get personalized advice on your diet, meal composition, and ways to improve your nutrition.</font></center>
<div style="display: flex; justify-content: center; align-items: center; margin-top: 20px;">
    <img src="https://zozs97eh0bkqexza.public.blob.vercel-storage.com/alan-VD7bRf1rKuEBL6EDAjw0eLGVodhoh8.png" alt="Alan AI Logo" style="height: 50px; margin-right: 20px;">
    <img src="https://seeklogo.com/images/M/mistral-ai-icon-logo-B3319DCA6B-seeklogo.com.png" alt="Mistral AI Logo" style="height: 50px;">
</div>
"""

# Define LaTeX delimiters
latex_delimiters_set = [
    {"left": "\\(", "right": "\\)", "display": False},
    {"left": "\\begin{equation}", "right": "\\end{equation}", "display": True},
    {"left": "\\begin{align}", "right": "\\end{align}", "display": True},
    {"left": "\\begin{alignat}", "right": "\\end{alignat}", "display": True},
    {"left": "\\begin{gather}", "right": "\\end{gather}", "display": True},
    {"left": "\\begin{CD}", "right": "\\end{CD}", "display": True},
    {"left": "\\[", "right": "\\]", "display": True}
]

# Create the Gradio interface
with gr.Blocks(title="PixDiet", theme=gr.themes.Ocean()) as demo:
    gr.HTML(html)
    with gr.Row():
        with gr.Column(scale=3):
            image_input = gr.Image(label="Upload your meal image", height=350, type="pil")
            gr.Examples(
                examples=[
                    ["./examples/mistral_breakfast.jpeg", ""],
                    ["./examples/mistral_desert.jpeg", ""],
                    ["./examples/mistral_snacks.jpeg", ""],
                    ["./examples/mistral_pasta.jpeg", ""],

                ],
                inputs=[image_input, gr.Textbox(visible=False)]
            )
        with gr.Column(scale=7):
            chatbot = gr.Chatbot(label="Chat with PixDiet", layout="panel", height=600, show_copy_button=True, latex_delimiters=latex_delimiters_set)
            text_input = gr.Textbox(label="Ask about your meal", placeholder="(Optional) Enter your message here...", lines=1, container=False)
            with gr.Row():
                send_btn = gr.Button("Send", variant="primary")
                clear_btn = gr.Button("Delete my historic", variant="huggingface")

    def submit_chat(chatbot, text_input):
        response = ''
        chatbot.append((text_input, response))
        return chatbot, ''

    def clear_chat():
        delete_user_history(USER_ID)
        return [], None, ""

    send_click_event = send_btn.click(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(
        bot_streaming, [chatbot, image_input], chatbot
    )
    submit_event = text_input.submit(submit_chat, [chatbot, text_input], [chatbot, text_input]).then(
        bot_streaming, [chatbot, image_input], chatbot
    )
    clear_btn.click(clear_chat, outputs=[chatbot, image_input, text_input])

if __name__ == "__main__":
    demo.launch(debug=False, share=False, show_api=False)