from typing import Optional import gradio as gr import qrcode import torch from diffusers import ( ControlNetModel, EulerAncestralDiscreteScheduler, StableDiffusionControlNetPipeline, ) from gradio.components import Image, Radio, Slider, Textbox, Number from PIL import Image as PilImage from typing_extensions import Literal def main(): device = ( 'cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu' ) controlnet_tile = ControlNetModel.from_pretrained( "lllyasviel/control_v11f1e_sd15_tile", torch_dtype=torch.float16, use_safetensors=False ).to(device) controlnet_brightness = ControlNetModel.from_pretrained( "ioclab/control_v1p_sd15_brightness", torch_dtype=torch.float16, use_safetensors=True ).to(device) def make_pipe(hf_repo: str, device: str) -> StableDiffusionControlNetPipeline: pipe = StableDiffusionControlNetPipeline.from_pretrained( hf_repo, controlnet=[controlnet_tile, controlnet_brightness], torch_dtype=torch.float16, ) pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) # pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) return pipe.to(device) pipes = { "DreamShaper": make_pipe("Lykon/DreamShaper", "cpu"), # "Realistic Vision V1.4": make_pipe("SG161222/Realistic_Vision_V1.4", "cpu"), # "OpenJourney": make_pipe("prompthero/openjourney", "cpu"), # "Anything V3": make_pipe("Linaqruf/anything-v3.0", "cpu"), } def move_pipe(hf_repo: str): for pipe_name, pipe in pipes.items(): if pipe_name != hf_repo: pipe.to("cpu") return pipes[hf_repo].to(device) def predict( model: Literal[ "DreamShaper", # "Realistic Vision V1.4", # "OpenJourney", # "Anything V3" ], qrcode_data: str, prompt: str, negative_prompt: Optional[str] = None, num_inference_steps: int = 100, guidance_scale: int = 9, controlnet_conditioning_tile: float = 0.25, controlnet_conditioning_brightness: float = 0.45, seed: int = 1331, ) -> PilImage: generator = torch.Generator(device="cuda").manual_seed(seed) if model == "DreamShaper": pipe = move_pipe("DreamShaper") # elif model == "Realistic Vision V1.4": # pipe = move_pipe("Realistic Vision V1.4") # elif model == "OpenJourney": # pipe = move_pipe("OpenJourney") # elif model == "Anything V3": # pipe = move_pipe("Anything V3") qr = qrcode.QRCode( error_correction=qrcode.constants.ERROR_CORRECT_H, box_size=11, border=9, ) qr.add_data(qrcode_data) qr.make(fit=True) qrcode_image = qr.make_image( fill_color="black", back_color="white" ).convert("RGB") qrcode_image = qrcode_image.resize((512, 512), PilImage.LANCZOS) image = pipe( prompt, [qrcode_image, qrcode_image], num_inference_steps=num_inference_steps, generator=generator, negative_prompt=negative_prompt, guidance_scale=guidance_scale, controlnet_conditioning_scale=[ controlnet_conditioning_tile, controlnet_conditioning_brightness ] ).images[0] return image ui = gr.Interface( fn=predict, inputs=[ Radio( value="DreamShaper", label="Model", choices=[ "DreamShaper", # "Realistic Vision V1.4", # "OpenJourney", # "Anything V3" ], ), Textbox( value="https://twitter.com/JulienBlanchon", label="QR Code Data", ), Textbox( value="Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", label="Prompt", ), Textbox( value="logo, watermark, signature, text, BadDream, UnrealisticDream", label="Negative Prompt", optional=True ), Slider( value=100, label="Number of Inference Steps", minimum=10, maximum=400, step=1, ), Slider( value=9, label="Guidance Scale", minimum=1, maximum=20, step=1, ), Slider( value=0.25, label="Controlnet Conditioning Tile", minimum=0.0, maximum=1.0, step=0.05, ), Slider( value=0.45, label="Controlnet Conditioning Brightness", minimum=0.0, maximum=1.0, step=0.05, ), Number( value=1, label="Seed", precision=0, ), ], outputs=Image( label="Generated Image", type="pil", ), examples=[ [ "DreamShaper", "https://twitter.com/JulienBlanchon", "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", "logo, watermark, signature, text, BadDream, UnrealisticDream", 100, 9, 0.25, 0.45, 1, ], # [ # "Anything V3", # "https://twitter.com/JulienBlanchon", # "Japanese ramen with chopsticks, egg and steam, ultra detailed 8k", # "logo, watermark, signature, text, BadDream, UnrealisticDream", # 100, # 9, # 0.25, # 0.60, # 1, # ], [ "DreamShaper", "https://twitter.com/JulienBlanchon", "processor, chipset, electricity, black and white board", "logo, watermark, signature, text, BadDream, UnrealisticDream", 300, 9, 0.50, 0.30, 1, ], ], cache_examples=True, title="Stable Diffusion QR Code Controlnet", description="Generate QR Code with Stable Diffusion and Controlnet", allow_flagging="never", max_batch_size=1, ) ui.queue(concurrency_count=10).launch() if __name__ == "__main__": main()