File size: 2,599 Bytes
7f5f166
 
 
aaa5c24
0129fc7
aaa5c24
85bf60f
7f5f166
aaa5c24
7f5f166
 
6a96128
c2d57f1
 
35ea367
 
 
 
 
 
 
c2d57f1
 
 
 
59cacb3
 
 
c2d57f1
35ea367
59cacb3
 
 
 
 
 
 
 
 
 
 
c2d57f1
59cacb3
6a96128
7f5f166
59cacb3
7f5f166
 
 
 
 
 
 
 
c2d57f1
59cacb3
c2d57f1
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import streamlit as st
import advertools as adv
import pandas as pd
# Sidebar instructions
st.sidebar.markdown("### Web Page Header Extractor")
st.sidebar.markdown("""
Enter your webpage URL into the tool to analyze header tags. Shout out to Elias Dabbas for [Advertools](https://github.com/eliasdabbas/advertools) which i used in the backend and as always, thanks to Koray Tuğberk Gübür for all the knowledge I have learned from Topical Authority SEO course. [topicalauthority.digital](https://www.topicalauthority.digital/)""")

st.sidebar.markdown("## Tool uploaded and maintained by: [Blazing SEO](http://blazing-seo.com/)")
def extract_headers(url):
    try:
        # Define the output file path
        output_file = "crawl_output.jl"

        # Perform the crawl with restricted settings
        adv.crawl(
            url,
            output_file=output_file,
            follow_links=False,  # Do not follow links
            allowed_domains=[url.split('//')[1].split('/')[0]]  # Restrict to the base domain
        )

        # Load the crawl data
        crawl_df = pd.read_json(output_file, lines=True)

        # Display the column names for debugging
        print("Columns in the crawl data:", crawl_df.columns)

        # Extract headers from h1 to h6
        headers_columns = [col for col in crawl_df.columns if col.startswith('h') and col[1:].isdigit()]
        print("Header columns found:", headers_columns)

        # Create a DataFrame for headers
        headers = crawl_df[headers_columns]
        
        # Melt and split headers by @@ delimiter
        headers_melted = headers.melt(var_name='Header', value_name='Content').dropna()
        headers_melted['Content'] = headers_melted['Content'].apply(lambda x: x.split('@@') if isinstance(x, str) else [])

        # Explode the headers to separate rows
        headers_exploded = headers_melted.explode('Content').dropna().reset_index(drop=True)

        return headers_exploded

    except Exception as e:
        print("Error occurred:", e)
        return str(e)

def main():
    st.title("Web Page Header Extractor")

    url = st.text_input("Enter the URL of the web page:")
    if st.button("Extract Headers"):
        if url:
            headers = extract_headers(url)
            if isinstance(headers, pd.DataFrame) and not headers.empty:
                st.write("Extracted Headers:")
                st.write(headers)
            else:
                st.error("No headers found or an error occurred.")
        else:
            st.error("Please enter a valid URL.")

if __name__ == "__main__":
    main()