blueberrr commited on
Commit
ff69667
·
verified ·
1 Parent(s): af03951

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -0
app.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers import AutoModelForCausalLM, AutoTokenizer
2
+
3
+ model = AutoModelForCausalLM.from_pretrained("AdaptLLM/finance-LLM-13B")
4
+ tokenizer = AutoTokenizer.from_pretrained("AdaptLLM/finance-LLM-13B", use_fast=False)
5
+
6
+
7
+ # Put your input here:
8
+ user_input = '''Use this fact to answer the question: Title of each class Trading Symbol(s) Name of each exchange on which registered
9
+ Common Stock, Par Value $.01 Per Share MMM New York Stock Exchange
10
+ MMM Chicago Stock Exchange, Inc.
11
+ 1.500% Notes due 2026 MMM26 New York Stock Exchange
12
+ 1.750% Notes due 2030 MMM30 New York Stock Exchange
13
+ 1.500% Notes due 2031 MMM31 New York Stock Exchange
14
+
15
+ Which debt securities are registered to trade on a national securities exchange under 3M's name as of Q2 of 2023?'''
16
+
17
+ # Simply use your input as the prompt for base models
18
+ prompt = user_input
19
+
20
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).input_ids.to(model.device)
21
+ outputs = model.generate(input_ids=inputs, max_length=2048)[0]
22
+
23
+ answer_start = int(inputs.shape[-1])
24
+ pred = tokenizer.decode(outputs[answer_start:], skip_special_tokens=True)
25
+
26
+ print(f'### User Input:\n{user_input}\n\n### Assistant Output:\n{pred}')