Spaces:
Sleeping
Sleeping
import gradio as gr | |
from ctransformers import AutoModelForCausalLM | |
from transformers import AutoTokenizer, pipeline | |
import torch | |
import re | |
import random | |
### FEEDBACKS UPDATE IN PERSISTENT MEMORY | |
from pathlib import Path | |
from huggingface_hub import CommitScheduler | |
import json | |
JSON_DATASET_DIR = Path("json_dataset") | |
JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True) | |
JSON_DATASET_PATH = JSON_DATASET_DIR / f"feedbacks.json" | |
scheduler = CommitScheduler( | |
repo_id="bmi-labmedinfo/feedbacks", | |
repo_type="dataset", | |
folder_path=JSON_DATASET_DIR, | |
path_in_repo="data", | |
) | |
def save_json(last_state: dict, pos_or_neg: str) -> None: | |
last_state["feedback"]=pos_or_neg | |
with scheduler.lock: | |
with JSON_DATASET_PATH.open("a") as f: | |
json.dump(last_state, f) | |
f.write("\n") | |
### /FEEDBACKS | |
# Initialize the model | |
model = AutoModelForCausalLM.from_pretrained("bmi-labmedinfo/Igea-1B-instruct-GGUF", model_file="unsloth.Q4_K_M.gguf", model_type="mistral", hf=True) | |
tokenizer = AutoTokenizer.from_pretrained( "bmi-labmedinfo/Igea-1B-instruct") | |
gen_pipeline = pipeline( | |
"text-generation", | |
model=model, | |
tokenizer=tokenizer | |
) | |
system_med_msgs = ["Sei un assistente medico virtuale. Offri supporto per la gestione delle richieste mediche e fornisci informazioni mediche.", | |
"Sei un assistente medico virtuale. Offri supporto per questioni mediche.", | |
"Sei un assistente virtuale sanitario. Offri supporto e informazioni su problemi di salute.", | |
"Sei un assistente virtuale per la salute. Fornisci supporto per richieste riguardanti la salute.", | |
"Sei un assistente digitale per la salute. Fornisci supporto su questioni mediche e sanitarie.", | |
"Sei un assistente virtuale per informazioni sanitarie. Fornisci supporto su problemi di salute e benessere.", | |
"Sei un assistente digitale per la gestione delle questioni sanitarie. Rispondi a richieste mediche e fornisci informazioni sanitarie.", | |
"Sei un assistente sanitario digitale. Rispondi a richieste di natura medica e fornisci informazioni sanitarie.", | |
"Sei un assistente sanitario virtuale. Aiuti a rispondere a richieste mediche e fornisci informazioni sanitarie."] | |
alpaca_instruct_prompt = """{} | |
### Istruzione: | |
{} | |
### Risposta: | |
{}""" | |
# Define the function to generate text | |
def generate_text(input_text, max_new_tokens=512, temperature=1, system_prompt=""): | |
if len(system_prompt)>0: | |
system_str = system_prompt | |
else: | |
system_str = random.choice(system_med_msgs) | |
prompt = alpaca_instruct_prompt.format(system_str, input_text,"") | |
output = gen_pipeline( | |
prompt, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
return_full_text = False, | |
forced_eos_token_id=tokenizer.encode("[...]")[1], | |
pad_token_id=tokenizer.eos_token_id | |
) | |
generated_text = output[0]['generated_text'] | |
generated_text_color = 'blue' | |
split_tentative = generated_text.split("### Risposta:") | |
if len(split_tentative) > 1: | |
generated_text = split_tentative[1] | |
elif '### Istruzione:' in split_tentative[0]: | |
generated_text = "Spiacente, non sono in grado di rispondere." | |
generated_text_color = 'red' | |
return f"<span>{input_text}</span><b style='color: {generated_text_color};'>{generated_text}</b>", {"input_prompt":prompt, "generated_text_raw":output[0]['generated_text'], "generated_text_displayed":generated_text} | |
def positive_feedback(last_generated_text): | |
save_json(last_generated_text,"positive") | |
gr.Info("Feedback collected. Thanks!") | |
def negative_feedback(last_generated_text): | |
save_json(last_generated_text,"negative") | |
gr.Info("Feedback collected. Thanks!") | |
# Create the Gradio interface | |
input_text = gr.Textbox(lines=2, placeholder="Enter your request here...", label="Input Text") | |
system_prompt = gr.Textbox(lines=2, placeholder="Enter custom system prompt...", label="Custom System Prompt") | |
max_new_tokens = gr.Slider(minimum=1, maximum=200, value=100, step=1, label="Max New Tokens") | |
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=1.0, step=0.1, label="Temperature") | |
with gr.Blocks(css="#outbox { border-radius: 8px !important; border: 1px solid #e5e7eb !important; padding: 8px !important; text-align:center !important;}") as iface: | |
last_generated_text = gr.State({"input_prompt":"", "generated_text_raw":"", "generated_text_displayed":""}) | |
gr.Markdown("# Igea Instruct Interface ⚕️🩺") | |
gr.Markdown("🐢💬 To guarantee a reasonable througput (<1 min to answer with default settings), this space employs a **GGUF quantized version of [Igea 1B](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1)**, optimized for **hardware-limited, CPU-only machines** like the free-tier HuggingFace space. Quantized models may result in significant performance degradation and therefore are not representative of the original model capabilities.") | |
gr.Markdown("⚠️ Read the **[bias, risks and limitations](https://huggingface.co/bmi-labmedinfo/Igea-1B-v0.0.1#%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8-bias-risks-and-limitations-%F0%9F%9A%A8%E2%9A%A0%EF%B8%8F%F0%9F%9A%A8)** of Igea before use!") | |
input_text.render() | |
with gr.Accordion("Advanced Options", open=False): | |
max_new_tokens.render() | |
temperature.render() | |
system_prompt.render() | |
output = gr.HTML(label="Generated Text",elem_id="outbox") | |
btn = gr.Button("Generate") | |
btn.click(generate_text, [input_text, max_new_tokens, temperature, system_prompt], outputs=[output, last_generated_text]) | |
with gr.Row(): | |
btn_p = gr.Button("👍") | |
btn_n = gr.Button("👎") | |
btn_p.click(positive_feedback, inputs=[last_generated_text], outputs=None) | |
btn_n.click(negative_feedback, inputs=[last_generated_text], outputs=None) | |
# Launch the interface | |
if __name__ == "__main__": | |
iface.launch(inline=True) | |