Spaces:
Sleeping
Sleeping
File size: 41,797 Bytes
1a5d9a0 b6ac700 4c650d7 b6ac700 3ab1530 b6ac700 4c650d7 3ab1530 4c650d7 b6ac700 90ee2b3 b6ac700 3ab1530 b6ac700 3ab1530 b6ac700 852f4fa b6ac700 9428712 3ab1530 9428712 3ab1530 9428712 4c650d7 9428712 4c650d7 9428712 b6ac700 9428712 b6ac700 3ab1530 b6ac700 9428712 b6ac700 1a5d9a0 b6ac700 1a5d9a0 b6ac700 1a5d9a0 b6ac700 1a5d9a0 b6ac700 1a5d9a0 b6ac700 4c650d7 b6ac700 4c650d7 9428712 4c650d7 b6ac700 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 |
from datetime import datetime
import json
import math
from typing import Iterator, Union
import argparse
from io import StringIO
import os
import pathlib
import tempfile
import zipfile
import numpy as np
import torch
from src.config import VAD_INITIAL_PROMPT_MODE_VALUES, ApplicationConfig, VadInitialPromptMode
from src.hooks.progressListener import ProgressListener
from src.hooks.subTaskProgressListener import SubTaskProgressListener
from src.hooks.whisperProgressHook import create_progress_listener_handle
from src.languages import _TO_LANGUAGE_CODE
from src.languages import get_language_names
from src.languages import get_language_from_name
from src.modelCache import ModelCache
from src.prompts.jsonPromptStrategy import JsonPromptStrategy
from src.prompts.prependPromptStrategy import PrependPromptStrategy
from src.source import get_audio_source_collection
from src.vadParallel import ParallelContext, ParallelTranscription
# External programs
import ffmpeg
# UI
import gradio as gr
from src.download import ExceededMaximumDuration, download_url
from src.utils import optional_int, slugify, write_srt, write_vtt
from src.vad import AbstractTranscription, NonSpeechStrategy, PeriodicTranscriptionConfig, TranscriptionConfig, VadPeriodicTranscription, VadSileroTranscription
from src.whisper.abstractWhisperContainer import AbstractWhisperContainer
from src.whisper.whisperFactory import create_whisper_container
import shutil
import zhconv
# Configure more application defaults in config.json5
# Gradio seems to truncate files without keeping the extension, so we need to truncate the file prefix ourself
MAX_FILE_PREFIX_LENGTH = 17
# Limit auto_parallel to a certain number of CPUs (specify vad_cpu_cores to get a higher number)
MAX_AUTO_CPU_CORES = 8
WHISPER_MODELS = ["tiny", "base", "small", "medium", "large", "large-v1", "large-v2"]
class VadOptions:
def __init__(self, vad: str = None, vadMergeWindow: float = 5, vadMaxMergeSize: float = 150, vadPadding: float = 1, vadPromptWindow: float = 1,
vadInitialPromptMode: Union[VadInitialPromptMode, str] = VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
self.vad = vad
self.vadMergeWindow = vadMergeWindow
self.vadMaxMergeSize = vadMaxMergeSize
self.vadPadding = vadPadding
self.vadPromptWindow = vadPromptWindow
self.vadInitialPromptMode = vadInitialPromptMode if isinstance(vadInitialPromptMode, VadInitialPromptMode) \
else VadInitialPromptMode.from_string(vadInitialPromptMode)
class WhisperTranscriber:
def __init__(self, input_audio_max_duration: float = None, vad_process_timeout: float = None,
vad_cpu_cores: int = 1, delete_uploaded_files: bool = False, output_dir: str = None,
app_config: ApplicationConfig = None):
self.model_cache = ModelCache()
self.parallel_device_list = None
self.gpu_parallel_context = None
self.cpu_parallel_context = None
self.vad_process_timeout = vad_process_timeout
self.vad_cpu_cores = vad_cpu_cores
self.vad_model = None
self.inputAudioMaxDuration = input_audio_max_duration
self.deleteUploadedFiles = delete_uploaded_files
self.output_dir = output_dir
self.app_config = app_config
def set_parallel_devices(self, vad_parallel_devices: str):
self.parallel_device_list = [ device.strip() for device in vad_parallel_devices.split(",") ] if vad_parallel_devices else None
def set_auto_parallel(self, auto_parallel: bool):
if auto_parallel:
if torch.cuda.is_available():
self.parallel_device_list = [ str(gpu_id) for gpu_id in range(torch.cuda.device_count())]
self.vad_cpu_cores = min(os.cpu_count(), MAX_AUTO_CPU_CORES)
print("[Auto parallel] Using GPU devices " + str(self.parallel_device_list) + " and " + str(self.vad_cpu_cores) + " CPU cores for VAD/transcription.")
# Entry function for the simple tab
def transcribe_webui_simple(self, modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize,
word_timestamps: bool = False, highlight_words: bool = False):
return self.transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize,
word_timestamps, highlight_words)
# Entry function for the simple tab progress
def transcribe_webui_simple_progress(self, modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize,
word_timestamps: bool = False, highlight_words: bool = False,
progress=gr.Progress()):
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, self.app_config.vad_padding, self.app_config.vad_prompt_window, self.app_config.vad_initial_prompt_mode)
return self.transcribe_webui(modelName, languageName, urlData, multipleFiles, microphoneData, task, vadOptions,
word_timestamps=word_timestamps, highlight_words=highlight_words, progress=progress)
# Entry function for the full tab
def transcribe_webui_full(self, modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode,
# Word timestamps
word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str,
initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str,
condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float,
compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float):
return self.transcribe_webui_full_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode,
word_timestamps, highlight_words, prepend_punctuations, append_punctuations,
initial_prompt, temperature, best_of, beam_size, patience, length_penalty, suppress_tokens,
condition_on_previous_text, fp16, temperature_increment_on_fallback,
compression_ratio_threshold, logprob_threshold, no_speech_threshold)
# Entry function for the full tab with progress
def transcribe_webui_full_progress(self, modelName, languageName, urlData, multipleFiles, microphoneData, task,
vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode,
# Word timestamps
word_timestamps: bool, highlight_words: bool, prepend_punctuations: str, append_punctuations: str,
initial_prompt: str, temperature: float, best_of: int, beam_size: int, patience: float, length_penalty: float, suppress_tokens: str,
condition_on_previous_text: bool, fp16: bool, temperature_increment_on_fallback: float,
compression_ratio_threshold: float, logprob_threshold: float, no_speech_threshold: float,
progress=gr.Progress()):
# Handle temperature_increment_on_fallback
if temperature_increment_on_fallback is not None:
temperature = tuple(np.arange(temperature, 1.0 + 1e-6, temperature_increment_on_fallback))
else:
temperature = [temperature]
vadOptions = VadOptions(vad, vadMergeWindow, vadMaxMergeSize, vadPadding, vadPromptWindow, vadInitialPromptMode)
return self.transcribe_webui(modelName, languageName, urlData, multipleFiles, microphoneData, task, vadOptions,
initial_prompt=initial_prompt, temperature=temperature, best_of=best_of, beam_size=beam_size, patience=patience, length_penalty=length_penalty, suppress_tokens=suppress_tokens,
condition_on_previous_text=condition_on_previous_text, fp16=fp16,
compression_ratio_threshold=compression_ratio_threshold, logprob_threshold=logprob_threshold, no_speech_threshold=no_speech_threshold,
word_timestamps=word_timestamps, prepend_punctuations=prepend_punctuations, append_punctuations=append_punctuations, highlight_words=highlight_words,
progress=progress)
def transcribe_webui(self, modelName, languageName, urlData, multipleFiles, microphoneData, task,
vadOptions: VadOptions, progress: gr.Progress = None, highlight_words: bool = False,
**decodeOptions: dict):
try:
sources = self.__get_source(urlData, multipleFiles, microphoneData)
try:
langObj = get_language_from_name(languageName)
selectedLanguage = languageName.lower() if languageName is not None and len(languageName) > 0 else None
selectedModel = modelName if modelName is not None else "base"
model = create_whisper_container(whisper_implementation=self.app_config.whisper_implementation,
model_name=selectedModel, compute_type=self.app_config.compute_type,
cache=self.model_cache, models=self.app_config.models)
# Result
download = []
zip_file_lookup = {}
text = ""
vtt = ""
# Write result
downloadDirectory = tempfile.mkdtemp()
source_index = 0
outputDirectory = self.output_dir if self.output_dir is not None else downloadDirectory
# Progress
total_duration = sum([source.get_audio_duration() for source in sources])
current_progress = 0
# A listener that will report progress to Gradio
root_progress_listener = self._create_progress_listener(progress)
# Execute whisper
for source in sources:
source_prefix = ""
source_audio_duration = source.get_audio_duration()
if (len(sources) > 1):
# Prefix (minimum 2 digits)
source_index += 1
source_prefix = str(source_index).zfill(2) + "_"
print("Transcribing ", source.source_path)
scaled_progress_listener = SubTaskProgressListener(root_progress_listener,
base_task_total=total_duration,
sub_task_start=current_progress,
sub_task_total=source_audio_duration)
# Transcribe
result = self.transcribe_file(model, source.source_path, selectedLanguage, task, vadOptions, scaled_progress_listener, **decodeOptions)
filePrefix = slugify(source_prefix + source.get_short_name(), allow_unicode=True)
# Update progress
current_progress += source_audio_duration
source_download, source_text, source_vtt = self.write_result(result, filePrefix, outputDirectory, highlight_words)
if len(sources) > 1:
# Add new line separators
if (len(source_text) > 0):
source_text += os.linesep + os.linesep
if (len(source_vtt) > 0):
source_vtt += os.linesep + os.linesep
# Append file name to source text too
source_text = source.get_full_name() + ":" + os.linesep + source_text
source_vtt = source.get_full_name() + ":" + os.linesep + source_vtt
# Add to result
download.extend(source_download)
text += source_text
vtt += source_vtt
if (len(sources) > 1):
# Zip files support at least 260 characters, but we'll play it safe and use 200
zipFilePrefix = slugify(source_prefix + source.get_short_name(max_length=200), allow_unicode=True)
# File names in ZIP file can be longer
for source_download_file in source_download:
# Get file postfix (after last -)
filePostfix = os.path.basename(source_download_file).split("-")[-1]
zip_file_name = zipFilePrefix + "-" + filePostfix
zip_file_lookup[source_download_file] = zip_file_name
# Create zip file from all sources
if len(sources) > 1:
downloadAllPath = os.path.join(downloadDirectory, "All_Output-" + datetime.now().strftime("%Y%m%d-%H%M%S") + ".zip")
with zipfile.ZipFile(downloadAllPath, 'w', zipfile.ZIP_DEFLATED) as zip:
for download_file in download:
# Get file name from lookup
zip_file_name = zip_file_lookup.get(download_file, os.path.basename(download_file))
zip.write(download_file, arcname=zip_file_name)
download.insert(0, downloadAllPath)
return download, text, vtt
finally:
if languageName == "Chinese":
for file_path in source_download:
try:
with open(file_path, "r+", encoding="utf-8") as source:
content = source.read()
content = zhconv.convert(content, "zh-tw")
source.seek(0)
source.write(content)
except Exception as e:
# Ignore error - it's just a cleanup
print("Error converting Traditional Chinese with download source file: \n" + file_path + ", \n" + str(e))
# Cleanup source
if self.deleteUploadedFiles:
for source in sources:
if self.app_config.merge_subtitle_with_sources and self.app_config.output_dir is not None and len(source_download) > 0:
print("merge subtitle(srt) with source file [" + source.source_name + "]")
outRsult = ""
try:
srt_path = source_download[0]
save_path = os.path.join(self.app_config.output_dir, source.source_name)
save_without_ext, ext = os.path.splitext(save_path)
lang_ext = "." + langObj.code if langObj is not None else ""
output_with_srt = save_without_ext + lang_ext + ext
#ffmpeg -i "input.mp4" -i "input.srt" -c copy -c:s mov_text output.mp4
input_file = ffmpeg.input(source.source_path)
input_srt = ffmpeg.input(srt_path)
out = ffmpeg.output(input_file, input_srt, output_with_srt, vcodec='copy', acodec='copy', scodec='mov_text')
outRsult = out.run(overwrite_output=True)
except Exception as e:
# Ignore error - it's just a cleanup
print("Error merge subtitle with source file: \n" + source.source_path + ", \n" + str(e), outRsult)
elif self.app_config.save_downloaded_files and self.app_config.output_dir is not None and urlData:
print("Saving downloaded file [" + source.source_name + "]")
try:
shutil.copy(source.source_path, self.app_config.output_dir)
except Exception as e:
# Ignore error - it's just a cleanup
print("Error saving downloaded file: \n" + source.source_path + ", \n" + str(e))
print("Deleting temporary source file: " + source.source_path)
try:
os.remove(source.source_path)
except Exception as e:
# Ignore error - it's just a cleanup
print("Error deleting temporary source file: \n" + source.source_path + ", \n" + str(e))
except ExceededMaximumDuration as e:
return [], ("[ERROR]: Maximum remote video length is " + str(e.maxDuration) + "s, file was " + str(e.videoDuration) + "s"), "[ERROR]"
def transcribe_file(self, model: AbstractWhisperContainer, audio_path: str, language: str, task: str = None,
vadOptions: VadOptions = VadOptions(),
progressListener: ProgressListener = None, **decodeOptions: dict):
initial_prompt = decodeOptions.pop('initial_prompt', None)
if progressListener is None:
# Default progress listener
progressListener = ProgressListener()
if ('task' in decodeOptions):
task = decodeOptions.pop('task')
initial_prompt_mode = vadOptions.vadInitialPromptMode
# Set default initial prompt mode
if (initial_prompt_mode is None):
initial_prompt_mode = VadInitialPromptMode.PREPREND_FIRST_SEGMENT
if (initial_prompt_mode == VadInitialPromptMode.PREPEND_ALL_SEGMENTS or
initial_prompt_mode == VadInitialPromptMode.PREPREND_FIRST_SEGMENT):
# Prepend initial prompt
prompt_strategy = PrependPromptStrategy(initial_prompt, initial_prompt_mode)
elif (vadOptions.vadInitialPromptMode == VadInitialPromptMode.JSON_PROMPT_MODE):
# Use a JSON format to specify the prompt for each segment
prompt_strategy = JsonPromptStrategy(initial_prompt)
else:
raise ValueError("Invalid vadInitialPromptMode: " + initial_prompt_mode)
# Callable for processing an audio file
whisperCallable = model.create_callback(language, task, prompt_strategy=prompt_strategy, **decodeOptions)
# The results
if (vadOptions.vad == 'silero-vad'):
# Silero VAD where non-speech gaps are transcribed
process_gaps = self._create_silero_config(NonSpeechStrategy.CREATE_SEGMENT, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, process_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'silero-vad-skip-gaps'):
# Silero VAD where non-speech gaps are simply ignored
skip_gaps = self._create_silero_config(NonSpeechStrategy.SKIP, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, skip_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'silero-vad-expand-into-gaps'):
# Use Silero VAD where speech-segments are expanded into non-speech gaps
expand_gaps = self._create_silero_config(NonSpeechStrategy.EXPAND_SEGMENT, vadOptions)
result = self.process_vad(audio_path, whisperCallable, self.vad_model, expand_gaps, progressListener=progressListener)
elif (vadOptions.vad == 'periodic-vad'):
# Very simple VAD - mark every 5 minutes as speech. This makes it less likely that Whisper enters an infinite loop, but
# it may create a break in the middle of a sentence, causing some artifacts.
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=vadOptions.vadMaxMergeSize, max_prompt_window=vadOptions.vadPromptWindow)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)
else:
if (self._has_parallel_devices()):
# Use a simple period transcription instead, as we need to use the parallel context
periodic_vad = VadPeriodicTranscription()
period_config = PeriodicTranscriptionConfig(periodic_duration=math.inf, max_prompt_window=1)
result = self.process_vad(audio_path, whisperCallable, periodic_vad, period_config, progressListener=progressListener)
else:
# Default VAD
result = whisperCallable.invoke(audio_path, 0, None, None, progress_listener=progressListener)
return result
def _create_progress_listener(self, progress: gr.Progress):
if (progress is None):
# Dummy progress listener
return ProgressListener()
class ForwardingProgressListener(ProgressListener):
def __init__(self, progress: gr.Progress):
self.progress = progress
def on_progress(self, current: Union[int, float], total: Union[int, float]):
# From 0 to 1
self.progress(current / total)
def on_finished(self):
self.progress(1)
return ForwardingProgressListener(progress)
def process_vad(self, audio_path, whisperCallable, vadModel: AbstractTranscription, vadConfig: TranscriptionConfig,
progressListener: ProgressListener = None):
if (not self._has_parallel_devices()):
# No parallel devices, so just run the VAD and Whisper in sequence
return vadModel.transcribe(audio_path, whisperCallable, vadConfig, progressListener=progressListener)
gpu_devices = self.parallel_device_list
if (gpu_devices is None or len(gpu_devices) == 0):
# No GPU devices specified, pass the current environment variable to the first GPU process. This may be NULL.
gpu_devices = [os.environ.get("CUDA_VISIBLE_DEVICES", None)]
# Create parallel context if needed
if (self.gpu_parallel_context is None):
# Create a context wih processes and automatically clear the pool after 1 hour of inactivity
self.gpu_parallel_context = ParallelContext(num_processes=len(gpu_devices), auto_cleanup_timeout_seconds=self.vad_process_timeout)
# We also need a CPU context for the VAD
if (self.cpu_parallel_context is None):
self.cpu_parallel_context = ParallelContext(num_processes=self.vad_cpu_cores, auto_cleanup_timeout_seconds=self.vad_process_timeout)
parallel_vad = ParallelTranscription()
return parallel_vad.transcribe_parallel(transcription=vadModel, audio=audio_path, whisperCallable=whisperCallable,
config=vadConfig, cpu_device_count=self.vad_cpu_cores, gpu_devices=gpu_devices,
cpu_parallel_context=self.cpu_parallel_context, gpu_parallel_context=self.gpu_parallel_context,
progress_listener=progressListener)
def _has_parallel_devices(self):
return (self.parallel_device_list is not None and len(self.parallel_device_list) > 0) or self.vad_cpu_cores > 1
def _concat_prompt(self, prompt1, prompt2):
if (prompt1 is None):
return prompt2
elif (prompt2 is None):
return prompt1
else:
return prompt1 + " " + prompt2
def _create_silero_config(self, non_speech_strategy: NonSpeechStrategy, vadOptions: VadOptions):
# Use Silero VAD
if (self.vad_model is None):
self.vad_model = VadSileroTranscription()
config = TranscriptionConfig(non_speech_strategy = non_speech_strategy,
max_silent_period=vadOptions.vadMergeWindow, max_merge_size=vadOptions.vadMaxMergeSize,
segment_padding_left=vadOptions.vadPadding, segment_padding_right=vadOptions.vadPadding,
max_prompt_window=vadOptions.vadPromptWindow)
return config
def write_result(self, result: dict, source_name: str, output_dir: str, highlight_words: bool = False):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
text = result["text"]
language = result["language"]
languageMaxLineWidth = self.__get_max_line_width(language)
print("Max line width " + str(languageMaxLineWidth))
vtt = self.__get_subs(result["segments"], "vtt", languageMaxLineWidth, highlight_words=highlight_words)
srt = self.__get_subs(result["segments"], "srt", languageMaxLineWidth, highlight_words=highlight_words)
json_result = json.dumps(result, indent=4, ensure_ascii=False)
if language == "zh":
vtt = zhconv.convert(vtt, "zh-tw")
srt = zhconv.convert(srt, "zh-tw")
text = zhconv.convert(text, "zh-tw")
json_result = zhconv.convert(json_result, "zh-tw")
output_files = []
output_files.append(self.__create_file(srt, output_dir, source_name + "-subs.srt"));
output_files.append(self.__create_file(vtt, output_dir, source_name + "-subs.vtt"));
output_files.append(self.__create_file(text, output_dir, source_name + "-transcript.txt"));
output_files.append(self.__create_file(json_result, output_dir, source_name + "-result.json"));
return output_files, text, vtt
def clear_cache(self):
self.model_cache.clear()
self.vad_model = None
def __get_source(self, urlData, multipleFiles, microphoneData):
return get_audio_source_collection(urlData, multipleFiles, microphoneData, self.inputAudioMaxDuration)
def __get_max_line_width(self, language: str) -> int:
if (language and language.lower() in ["japanese", "ja", "chinese", "zh"]):
# Chinese characters and kana are wider, so limit line length to 40 characters
return 40
else:
# TODO: Add more languages
# 80 latin characters should fit on a 1080p/720p screen
return 80
def __get_subs(self, segments: Iterator[dict], format: str, maxLineWidth: int, highlight_words: bool = False) -> str:
segmentStream = StringIO()
if format == 'vtt':
write_vtt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
elif format == 'srt':
write_srt(segments, file=segmentStream, maxLineWidth=maxLineWidth, highlight_words=highlight_words)
else:
raise Exception("Unknown format " + format)
segmentStream.seek(0)
return segmentStream.read()
def __create_file(self, text: str, directory: str, fileName: str) -> str:
# Write the text to a file
with open(os.path.join(directory, fileName), 'w+', encoding="utf-8") as file:
file.write(text)
return file.name
def close(self):
print("Closing parallel contexts")
self.clear_cache()
if (self.gpu_parallel_context is not None):
self.gpu_parallel_context.close()
if (self.cpu_parallel_context is not None):
self.cpu_parallel_context.close()
def create_ui(app_config: ApplicationConfig):
ui = WhisperTranscriber(app_config.input_audio_max_duration, app_config.vad_process_timeout, app_config.vad_cpu_cores,
app_config.delete_uploaded_files, app_config.output_dir, app_config)
# Specify a list of devices to use for parallel processing
ui.set_parallel_devices(app_config.vad_parallel_devices)
ui.set_auto_parallel(app_config.auto_parallel)
is_whisper = False
if app_config.whisper_implementation == "whisper":
implementation_name = "Whisper"
is_whisper = True
elif app_config.whisper_implementation in ["faster-whisper", "faster_whisper"]:
implementation_name = "Faster Whisper"
else:
# Try to convert from camel-case to title-case
implementation_name = app_config.whisper_implementation.title().replace("_", " ").replace("-", " ")
ui_description = implementation_name + " is a general-purpose speech recognition model. It is trained on a large dataset of diverse "
ui_description += " audio and is also a multi-task model that can perform multilingual speech recognition "
ui_description += " as well as speech translation and language identification. "
ui_description += "\n\n\n\nFor longer audio files (>10 minutes) not in English, it is recommended that you select Silero VAD (Voice Activity Detector) in the VAD option."
# Recommend faster-whisper
if is_whisper:
ui_description += "\n\n\n\nFor faster inference on GPU, try [faster-whisper](https://huggingface.co/spaces/aadnk/faster-whisper-webui)."
if app_config.input_audio_max_duration > 0:
ui_description += "\n\n" + "Max audio file length: " + str(app_config.input_audio_max_duration) + " s"
ui_article = "Read the [documentation here](https://gitlab.com/aadnk/whisper-webui/-/blob/main/docs/options.md)."
whisper_models = app_config.get_model_names()
common_inputs = lambda : [
gr.Dropdown(choices=whisper_models, value=app_config.default_model_name, label="Model"),
gr.Dropdown(choices=sorted(get_language_names()), label="Language", value=app_config.language),
gr.Text(label="URL (YouTube, etc.)"),
gr.File(label="Upload Files", file_count="multiple"),
gr.Audio(source="microphone", type="filepath", label="Microphone Input"),
gr.Dropdown(choices=["transcribe", "translate"], label="Task", value=app_config.task),
]
common_vad_inputs = lambda : [
gr.Dropdown(choices=["none", "silero-vad", "silero-vad-skip-gaps", "silero-vad-expand-into-gaps", "periodic-vad"], value=app_config.default_vad, label="VAD"),
gr.Number(label="VAD - Merge Window (s)", precision=0, value=app_config.vad_merge_window),
gr.Number(label="VAD - Max Merge Size (s)", precision=0, value=app_config.vad_max_merge_size),
]
common_word_timestamps_inputs = lambda : [
gr.Checkbox(label="Word Timestamps", value=app_config.word_timestamps),
gr.Checkbox(label="Word Timestamps - Highlight Words", value=app_config.highlight_words),
]
common_output = lambda : [
gr.File(label="Download"),
gr.Text(label="Transcription"),
gr.Text(label="Segments"),
]
is_queue_mode = app_config.queue_concurrency_count is not None and app_config.queue_concurrency_count > 0
simple_callback = gr.CSVLogger()
with gr.Blocks() as simple_transcribe:
gr.Markdown(ui_description)
with gr.Row():
with gr.Column():
simple_submit = gr.Button("Submit", variant="primary")
simple_input = common_inputs() + common_vad_inputs() + common_word_timestamps_inputs()
with gr.Column():
simple_output = common_output()
simple_flag = gr.Button("Flag")
gr.Markdown(ui_article)
# This needs to be called at some point prior to the first call to callback.flag()
simple_callback.setup(simple_input + simple_output, "flagged")
simple_submit.click(fn=ui.transcribe_webui_simple_progress if is_queue_mode else ui.transcribe_webui_simple,
inputs=simple_input, outputs=simple_output)
# We can choose which components to flag -- in this case, we'll flag all of them
simple_flag.click(lambda *args: print("simple_callback.flag...") or simple_callback.flag(args), simple_input + simple_output, None, preprocess=False)
full_description = ui_description + "\n\n\n\n" + "Be careful when changing some of the options in the full interface - this can cause the model to crash."
full_callback = gr.CSVLogger()
with gr.Blocks() as full_transcribe:
gr.Markdown(full_description)
with gr.Row():
with gr.Column():
full_submit = gr.Button("Submit", variant="primary")
full_input1 = common_inputs() + common_vad_inputs() + [
gr.Number(label="VAD - Padding (s)", precision=None, value=app_config.vad_padding),
gr.Number(label="VAD - Prompt Window (s)", precision=None, value=app_config.vad_prompt_window),
gr.Dropdown(choices=VAD_INITIAL_PROMPT_MODE_VALUES, label="VAD - Initial Prompt Mode")]
full_input2 = common_word_timestamps_inputs() + [
gr.Text(label="Word Timestamps - Prepend Punctuations", value=app_config.prepend_punctuations),
gr.Text(label="Word Timestamps - Append Punctuations", value=app_config.append_punctuations),
gr.TextArea(label="Initial Prompt"),
gr.Number(label="Temperature", value=app_config.temperature),
gr.Number(label="Best Of - Non-zero temperature", value=app_config.best_of, precision=0),
gr.Number(label="Beam Size - Zero temperature", value=app_config.beam_size, precision=0),
gr.Number(label="Patience - Zero temperature", value=app_config.patience),
gr.Number(label="Length Penalty - Any temperature", value=app_config.length_penalty),
gr.Text(label="Suppress Tokens - Comma-separated list of token IDs", value=app_config.suppress_tokens),
gr.Checkbox(label="Condition on previous text", value=app_config.condition_on_previous_text),
gr.Checkbox(label="FP16", value=app_config.fp16),
gr.Number(label="Temperature increment on fallback", value=app_config.temperature_increment_on_fallback),
gr.Number(label="Compression ratio threshold", value=app_config.compression_ratio_threshold),
gr.Number(label="Logprob threshold", value=app_config.logprob_threshold),
gr.Number(label="No speech threshold", value=app_config.no_speech_threshold)]
with gr.Column():
full_output = common_output()
full_flag = gr.Button("Flag")
gr.Markdown(ui_article)
# This needs to be called at some point prior to the first call to callback.flag()
full_callback.setup(full_input1 + full_input2 + full_output, "flagged")
full_submit.click(fn=ui.transcribe_webui_full_progress if is_queue_mode else ui.transcribe_webui_full,
inputs=full_input1+full_input2, outputs=full_output)
# We can choose which components to flag -- in this case, we'll flag all of them
full_flag.click(lambda *args: print("full_callback.flag...") or full_callback.flag(args), full_input1 + full_input2 + full_output, None, preprocess=False)
demo = gr.TabbedInterface([simple_transcribe, full_transcribe], tab_names=["Simple", "Full"])
# Queue up the demo
if is_queue_mode:
demo.queue(concurrency_count=app_config.queue_concurrency_count)
print("Queue mode enabled (concurrency count: " + str(app_config.queue_concurrency_count) + ")")
else:
print("Queue mode disabled - progress bars will not be shown.")
demo.launch(inbrowser=app_config.autolaunch, share=app_config.share, server_name=app_config.server_name, server_port=app_config.server_port)
# Clean up
ui.close()
if __name__ == '__main__':
default_app_config = ApplicationConfig.create_default()
whisper_models = default_app_config.get_model_names()
# Environment variable overrides
default_whisper_implementation = os.environ.get("WHISPER_IMPLEMENTATION", default_app_config.whisper_implementation)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument("--input_audio_max_duration", type=int, default=default_app_config.input_audio_max_duration, \
help="Maximum audio file length in seconds, or -1 for no limit.") # 600
parser.add_argument("--share", type=bool, default=default_app_config.share, \
help="True to share the app on HuggingFace.") # False
parser.add_argument("--server_name", type=str, default=default_app_config.server_name, \
help="The host or IP to bind to. If None, bind to localhost.") # None
parser.add_argument("--server_port", type=int, default=default_app_config.server_port, \
help="The port to bind to.") # 7860
parser.add_argument("--queue_concurrency_count", type=int, default=default_app_config.queue_concurrency_count, \
help="The number of concurrent requests to process.") # 1
parser.add_argument("--default_model_name", type=str, choices=whisper_models, default=default_app_config.default_model_name, \
help="The default model name.") # medium
parser.add_argument("--default_vad", type=str, default=default_app_config.default_vad, \
help="The default VAD.") # silero-vad
parser.add_argument("--vad_initial_prompt_mode", type=str, default=default_app_config.vad_initial_prompt_mode, choices=VAD_INITIAL_PROMPT_MODE_VALUES, \
help="Whether or not to prepend the initial prompt to each VAD segment (prepend_all_segments), or just the first segment (prepend_first_segment)") # prepend_first_segment
parser.add_argument("--vad_parallel_devices", type=str, default=default_app_config.vad_parallel_devices, \
help="A commma delimited list of CUDA devices to use for parallel processing. If None, disable parallel processing.") # ""
parser.add_argument("--vad_cpu_cores", type=int, default=default_app_config.vad_cpu_cores, \
help="The number of CPU cores to use for VAD pre-processing.") # 1
parser.add_argument("--vad_process_timeout", type=float, default=default_app_config.vad_process_timeout, \
help="The number of seconds before inactivate processes are terminated. Use 0 to close processes immediately, or None for no timeout.") # 1800
parser.add_argument("--auto_parallel", type=bool, default=default_app_config.auto_parallel, \
help="True to use all available GPUs and CPU cores for processing. Use vad_cpu_cores/vad_parallel_devices to specify the number of CPU cores/GPUs to use.") # False
parser.add_argument("--output_dir", "-o", type=str, default=default_app_config.output_dir, \
help="directory to save the outputs")
parser.add_argument("--whisper_implementation", type=str, default=default_whisper_implementation, choices=["whisper", "faster-whisper"],\
help="the Whisper implementation to use")
parser.add_argument("--compute_type", type=str, default=default_app_config.compute_type, choices=["default", "auto", "int8", "int8_float16", "int16", "float16", "float32"], \
help="the compute type to use for inference")
parser.add_argument("--threads", type=optional_int, default=0,
help="number of threads used by torch for CPU inference; supercedes MKL_NUM_THREADS/OMP_NUM_THREADS")
parser.add_argument("--vad_max_merge_size", type=int, default=default_app_config.vad_max_merge_size, \
help="The number of VAD - Max Merge Size (s).") # 30
parser.add_argument("--language", type=str, default=None, choices=sorted(get_language_names()) + sorted([k.title() for k in _TO_LANGUAGE_CODE.keys()]),
help="language spoken in the audio, specify None to perform language detection")
parser.add_argument("--save_downloaded_files", action='store_true', \
help="True to move downloaded files to outputs directory. This argument will take effect only after output_dir is set.")
parser.add_argument("--merge_subtitle_with_sources", action='store_true', \
help="True to merge subtitle(srt) with sources and move the sources files to the outputs directory. This argument will take effect only after output_dir is set.")
parser.add_argument("--autolaunch", action='store_true', \
help="open the webui URL in the system's default browser upon launch")
args = parser.parse_args().__dict__
updated_config = default_app_config.update(**args)
if (threads := args.pop("threads")) > 0:
torch.set_num_threads(threads)
create_ui(app_config=updated_config) |