Spaces:
Sleeping
Sleeping
import abc | |
from typing import Any, Callable, List | |
from src.config import ModelConfig, VadInitialPromptMode | |
from src.hooks.progressListener import ProgressListener | |
from src.modelCache import GLOBAL_MODEL_CACHE, ModelCache | |
from src.prompts.abstractPromptStrategy import AbstractPromptStrategy | |
class AbstractWhisperCallback: | |
def __init__(self): | |
pass | |
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None): | |
""" | |
Peform the transcription of the given audio file or data. | |
Parameters | |
---------- | |
audio: Union[str, np.ndarray, torch.Tensor] | |
The audio file to transcribe, or the audio data as a numpy array or torch tensor. | |
segment_index: int | |
The target language of the transcription. If not specified, the language will be inferred from the audio content. | |
task: str | |
The task - either translate or transcribe. | |
progress_listener: ProgressListener | |
A callback to receive progress updates. | |
""" | |
raise NotImplementedError() | |
class LambdaWhisperCallback(AbstractWhisperCallback): | |
def __init__(self, callback_lambda: Callable[[Any, int, str, str, ProgressListener], None]): | |
super().__init__() | |
self.callback_lambda = callback_lambda | |
def invoke(self, audio, segment_index: int, prompt: str, detected_language: str, progress_listener: ProgressListener = None): | |
return self.callback_lambda(audio, segment_index, prompt, detected_language, progress_listener) | |
class AbstractWhisperContainer: | |
def __init__(self, model_name: str, device: str = None, compute_type: str = "float16", | |
download_root: str = None, | |
cache: ModelCache = None, models: List[ModelConfig] = []): | |
self.model_name = model_name | |
self.device = device | |
self.compute_type = compute_type | |
self.download_root = download_root | |
self.cache = cache | |
# Will be created on demand | |
self.model = None | |
# List of known models | |
self.models = models | |
def get_model(self): | |
if self.model is None: | |
if (self.cache is None): | |
self.model = self._create_model() | |
else: | |
model_key = "WhisperContainer." + self.model_name + ":" + (self.device if self.device else '') | |
self.model = self.cache.get(model_key, self._create_model) | |
return self.model | |
def _create_model(self): | |
raise NotImplementedError() | |
def ensure_downloaded(self): | |
pass | |
def create_callback(self, languageCode: str = None, task: str = None, | |
prompt_strategy: AbstractPromptStrategy = None, | |
**decodeOptions: dict) -> AbstractWhisperCallback: | |
""" | |
Create a WhisperCallback object that can be used to transcript audio files. | |
Parameters | |
---------- | |
languageCode: str | |
The target language code of the transcription. If not specified, the language will be inferred from the audio content. | |
task: str | |
The task - either translate or transcribe. | |
prompt_strategy: AbstractPromptStrategy | |
The prompt strategy to use for the transcription. | |
decodeOptions: dict | |
Additional options to pass to the decoder. Must be pickleable. | |
Returns | |
------- | |
A WhisperCallback object. | |
""" | |
raise NotImplementedError() | |
# This is required for multiprocessing | |
def __getstate__(self): | |
return { | |
"model_name": self.model_name, | |
"device": self.device, | |
"download_root": self.download_root, | |
"models": self.models, | |
"compute_type": self.compute_type | |
} | |
def __setstate__(self, state): | |
self.model_name = state["model_name"] | |
self.device = state["device"] | |
self.download_root = state["download_root"] | |
self.models = state["models"] | |
self.compute_type = state["compute_type"] | |
self.model = None | |
# Depickled objects must use the global cache | |
self.cache = GLOBAL_MODEL_CACHE |