Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,56 +1,56 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
-
from tensorflow import keras
|
4 |
-
from math import sqrt, ceil
|
5 |
-
|
6 |
-
from huggingface_hub import from_pretrained_keras
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
|
10 |
-
|
11 |
-
model = from_pretrained_keras("keras-io/conditional-gan")
|
12 |
-
|
13 |
-
latent_dim = 128
|
14 |
-
|
15 |
-
def generate_latent_points(digit, latent_dim, n_samples, n_classes=10):
|
16 |
-
# generate points in the latent space
|
17 |
-
random_latent_vectors = tf.random.normal(shape=(n_samples, latent_dim))
|
18 |
-
labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
|
19 |
-
return tf.concat([random_latent_vectors, labels], 1)
|
20 |
-
|
21 |
-
def create_digit_samples(digit, n_samples):
|
22 |
-
if digit in range(10):
|
23 |
-
latent_dim = 128
|
24 |
-
random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
|
25 |
-
examples = model.predict(random_vector_labels)
|
26 |
-
examples = examples * 255.0
|
27 |
-
size = ceil(sqrt(n_samples))
|
28 |
-
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
29 |
-
n = 0
|
30 |
-
for i in range(size):
|
31 |
-
for j in range(size):
|
32 |
-
if n == n_samples:
|
33 |
-
break
|
34 |
-
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
35 |
-
n += 1
|
36 |
-
digit_images = (digit_images/127.5) -1
|
37 |
-
return digit_images
|
38 |
-
|
39 |
-
description = "Keras implementation for Conditional GAN to generate samples for specific digit of MNIST"
|
40 |
-
article = "Author:<a href=\"https://huggingface.co/rajrathi\"> Rajeshwar Rathi</a>; Based on the keras example by <a href=\"https://keras.io/examples/generative/conditional_gan/\">Sayak Paul</a>"
|
41 |
-
title = "
|
42 |
-
|
43 |
-
examples = [[1, 10], [3, 5], [5, 15]]
|
44 |
-
|
45 |
-
|
46 |
-
iface = gr.Interface(
|
47 |
-
fn = create_digit_samples,
|
48 |
-
inputs = ["number", "number"],
|
49 |
-
outputs = ["image"],
|
50 |
-
examples = examples,
|
51 |
-
description = description,
|
52 |
-
title = title,
|
53 |
-
article = article
|
54 |
-
)
|
55 |
-
|
56 |
iface.launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import tensorflow as tf
|
3 |
+
from tensorflow import keras
|
4 |
+
from math import sqrt, ceil
|
5 |
+
|
6 |
+
from huggingface_hub import from_pretrained_keras
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
model = from_pretrained_keras("keras-io/conditional-gan")
|
12 |
+
|
13 |
+
latent_dim = 128
|
14 |
+
|
15 |
+
def generate_latent_points(digit, latent_dim, n_samples, n_classes=10):
|
16 |
+
# generate points in the latent space
|
17 |
+
random_latent_vectors = tf.random.normal(shape=(n_samples, latent_dim))
|
18 |
+
labels = tf.keras.utils.to_categorical([digit for _ in range(n_samples)], n_classes)
|
19 |
+
return tf.concat([random_latent_vectors, labels], 1)
|
20 |
+
|
21 |
+
def create_digit_samples(digit, n_samples):
|
22 |
+
if digit in range(10):
|
23 |
+
latent_dim = 128
|
24 |
+
random_vector_labels = generate_latent_points(int(digit), latent_dim, int(n_samples))
|
25 |
+
examples = model.predict(random_vector_labels)
|
26 |
+
examples = examples * 255.0
|
27 |
+
size = ceil(sqrt(n_samples))
|
28 |
+
digit_images = np.zeros((28*size, 28*size), dtype=float)
|
29 |
+
n = 0
|
30 |
+
for i in range(size):
|
31 |
+
for j in range(size):
|
32 |
+
if n == n_samples:
|
33 |
+
break
|
34 |
+
digit_images[i* 28 : (i+1)*28, j*28 : (j+1)*28] = examples[n, :, :, 0]
|
35 |
+
n += 1
|
36 |
+
digit_images = (digit_images/127.5) -1
|
37 |
+
return digit_images
|
38 |
+
|
39 |
+
description = "Keras implementation for Conditional GAN to generate samples for specific digit of MNIST"
|
40 |
+
article = "Author:<a href=\"https://huggingface.co/rajrathi\"> Rajeshwar Rathi</a>; Based on the keras example by <a href=\"https://keras.io/examples/generative/conditional_gan/\">Sayak Paul</a>"
|
41 |
+
title = "cGAN MNIST"
|
42 |
+
|
43 |
+
examples = [[1, 10], [3, 5], [5, 15]]
|
44 |
+
|
45 |
+
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn = create_digit_samples,
|
48 |
+
inputs = ["number", "number"],
|
49 |
+
outputs = ["image"],
|
50 |
+
examples = examples,
|
51 |
+
description = description,
|
52 |
+
title = title,
|
53 |
+
article = article
|
54 |
+
)
|
55 |
+
|
56 |
iface.launch()
|