Spaces:
Sleeping
Sleeping
bofenghuang
commited on
Commit
Β·
6ca16de
1
Parent(s):
b8d7022
Add demo
Browse files- README.md +5 -4
- common.py +728 -0
- qa_browser.py +448 -0
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
title: Mt Bench French Browser
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.10.0
|
8 |
-
app_file:
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Mt Bench French Browser
|
3 |
+
emoji: π
|
4 |
+
colorFrom: yellow
|
5 |
+
colorTo: pink
|
6 |
sdk: gradio
|
7 |
sdk_version: 4.10.0
|
8 |
+
app_file: qa_browser.py
|
9 |
pinned: false
|
10 |
+
license: other
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
common.py
ADDED
@@ -0,0 +1,728 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Common data structures and utilities.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import ast
|
6 |
+
import dataclasses
|
7 |
+
import glob
|
8 |
+
import json
|
9 |
+
import os
|
10 |
+
import re
|
11 |
+
import time
|
12 |
+
from typing import Optional
|
13 |
+
|
14 |
+
import openai
|
15 |
+
import anthropic
|
16 |
+
|
17 |
+
from mistralai.client import MistralClient
|
18 |
+
|
19 |
+
from fastchat.model.model_adapter import get_conversation_template, ANTHROPIC_MODEL_LIST, MISTRAL_MODEL_LIST
|
20 |
+
|
21 |
+
# API setting constants
|
22 |
+
API_MAX_RETRY = 16
|
23 |
+
API_RETRY_SLEEP = 10
|
24 |
+
API_ERROR_OUTPUT = "$ERROR$"
|
25 |
+
|
26 |
+
TIE_DELTA = 0.1
|
27 |
+
|
28 |
+
# Categories that need reference answers
|
29 |
+
NEED_REF_CATS = ["math", "reasoning", "coding", "arena-hard-200"]
|
30 |
+
|
31 |
+
# Extract scores from judgments
|
32 |
+
two_score_pattern = re.compile("\[\[(\d+\.?\d*),\s?(\d+\.?\d*)\]\]")
|
33 |
+
two_score_pattern_backup = re.compile("\[(\d+\.?\d*),\s?(\d+\.?\d*)\]")
|
34 |
+
one_score_pattern = re.compile("\[\[(\d+\.?\d*)\]\]")
|
35 |
+
one_score_pattern_backup = re.compile("\[(\d+\.?\d*)\]")
|
36 |
+
|
37 |
+
# Sampling temperature configs for
|
38 |
+
temperature_config = {
|
39 |
+
"writing": 0.7,
|
40 |
+
"roleplay": 0.7,
|
41 |
+
"extraction": 0.0,
|
42 |
+
"math": 0.0,
|
43 |
+
"coding": 0.0,
|
44 |
+
"reasoning": 0.0,
|
45 |
+
"stem": 0.1,
|
46 |
+
"humanities": 0.1,
|
47 |
+
"arena-hard-200": 0.0,
|
48 |
+
}
|
49 |
+
|
50 |
+
reverse_model_map = {
|
51 |
+
"model_1": "model_2",
|
52 |
+
"model_2": "model_1",
|
53 |
+
}
|
54 |
+
|
55 |
+
|
56 |
+
@dataclasses.dataclass
|
57 |
+
class Judge:
|
58 |
+
model_name: str
|
59 |
+
prompt_template: dict
|
60 |
+
ref_based: bool = False
|
61 |
+
multi_turn: bool = False
|
62 |
+
|
63 |
+
|
64 |
+
@dataclasses.dataclass
|
65 |
+
class MatchSingle:
|
66 |
+
question: dict
|
67 |
+
model: str
|
68 |
+
answer: dict
|
69 |
+
judge: Judge
|
70 |
+
ref_answer: dict = None
|
71 |
+
multi_turn: bool = False
|
72 |
+
|
73 |
+
|
74 |
+
@dataclasses.dataclass
|
75 |
+
class MatchPair:
|
76 |
+
question: dict
|
77 |
+
model_1: str
|
78 |
+
model_2: str
|
79 |
+
answer_1: dict
|
80 |
+
answer_2: dict
|
81 |
+
judge: Judge
|
82 |
+
ref_answer: dict = None
|
83 |
+
multi_turn: bool = False
|
84 |
+
|
85 |
+
|
86 |
+
def load_questions(question_file: str, begin: Optional[int], end: Optional[int]):
|
87 |
+
"""Load questions from a file."""
|
88 |
+
questions = []
|
89 |
+
with open(question_file, "r") as ques_file:
|
90 |
+
for line in ques_file:
|
91 |
+
if line:
|
92 |
+
questions.append(json.loads(line))
|
93 |
+
questions = questions[begin:end]
|
94 |
+
return questions
|
95 |
+
|
96 |
+
|
97 |
+
def load_model_answers(answer_dir: str):
|
98 |
+
"""Load model answers.
|
99 |
+
|
100 |
+
The return value is a python dict of type:
|
101 |
+
Dict[model_name: str -> Dict[question_id: int -> answer: dict]]
|
102 |
+
"""
|
103 |
+
filenames = glob.glob(os.path.join(answer_dir, "*.jsonl"))
|
104 |
+
filenames.sort()
|
105 |
+
model_answers = {}
|
106 |
+
|
107 |
+
for filename in filenames:
|
108 |
+
model_name = os.path.basename(filename)[:-6]
|
109 |
+
answer = {}
|
110 |
+
with open(filename) as fin:
|
111 |
+
for line in fin:
|
112 |
+
line = json.loads(line)
|
113 |
+
answer[line["question_id"]] = line
|
114 |
+
model_answers[model_name] = answer
|
115 |
+
|
116 |
+
return model_answers
|
117 |
+
|
118 |
+
|
119 |
+
def load_judge_prompts(prompt_file: str):
|
120 |
+
"""Load judge prompts.
|
121 |
+
|
122 |
+
The return value is a python dict of type:
|
123 |
+
Dict[judge_name: str -> dict]
|
124 |
+
"""
|
125 |
+
prompts = {}
|
126 |
+
with open(prompt_file) as fin:
|
127 |
+
for line in fin:
|
128 |
+
line = json.loads(line)
|
129 |
+
prompts[line["name"]] = line
|
130 |
+
return prompts
|
131 |
+
|
132 |
+
|
133 |
+
def run_judge_single(question, answer, judge, ref_answer, multi_turn=False):
|
134 |
+
kwargs = {}
|
135 |
+
model = judge.model_name
|
136 |
+
if ref_answer is not None:
|
137 |
+
kwargs["ref_answer_1"] = ref_answer["choices"][0]["turns"][0]
|
138 |
+
if multi_turn:
|
139 |
+
kwargs["ref_answer_2"] = ref_answer["choices"][0]["turns"][1]
|
140 |
+
|
141 |
+
if multi_turn:
|
142 |
+
user_prompt = judge.prompt_template["prompt_template"].format(
|
143 |
+
question_1=question["turns"][0],
|
144 |
+
question_2=question["turns"][1],
|
145 |
+
answer_1=answer["choices"][0]["turns"][0],
|
146 |
+
answer_2=answer["choices"][0]["turns"][1],
|
147 |
+
**kwargs,
|
148 |
+
)
|
149 |
+
else:
|
150 |
+
user_prompt = judge.prompt_template["prompt_template"].format(
|
151 |
+
question=question["turns"][0],
|
152 |
+
answer=answer["choices"][0]["turns"][0],
|
153 |
+
**kwargs,
|
154 |
+
)
|
155 |
+
|
156 |
+
rating = -1
|
157 |
+
|
158 |
+
system_prompt = judge.prompt_template["system_prompt"]
|
159 |
+
conv = get_conversation_template(model)
|
160 |
+
conv.set_system_message(system_prompt)
|
161 |
+
conv.append_message(conv.roles[0], user_prompt)
|
162 |
+
conv.append_message(conv.roles[1], None)
|
163 |
+
|
164 |
+
if model in ["gpt-3.5-turbo", "gpt-4"]:
|
165 |
+
judgment = chat_compeletion_openai(model, conv, temperature=0, max_tokens=2048)
|
166 |
+
elif model in ANTHROPIC_MODEL_LIST:
|
167 |
+
judgment = chat_compeletion_anthropic(
|
168 |
+
model, conv, temperature=0, max_tokens=1024
|
169 |
+
)
|
170 |
+
elif model in MISTRAL_MODEL_LIST:
|
171 |
+
judgment = chat_compeletion_mistral(
|
172 |
+
model, conv, temperature=0, max_tokens=1024
|
173 |
+
)
|
174 |
+
else:
|
175 |
+
raise ValueError(f"Invalid judge model name: {model}")
|
176 |
+
|
177 |
+
if judge.prompt_template["output_format"] == "[[rating]]":
|
178 |
+
match = re.search(one_score_pattern, judgment)
|
179 |
+
if not match:
|
180 |
+
match = re.search(one_score_pattern_backup, judgment)
|
181 |
+
|
182 |
+
if match:
|
183 |
+
rating = ast.literal_eval(match.groups()[0])
|
184 |
+
else:
|
185 |
+
rating = -1
|
186 |
+
else:
|
187 |
+
raise ValueError(
|
188 |
+
f"invalid output format: {judge.prompt_template['output_format']}"
|
189 |
+
)
|
190 |
+
|
191 |
+
return rating, user_prompt, judgment
|
192 |
+
|
193 |
+
|
194 |
+
def play_a_match_single(match: MatchPair, output_file: str):
|
195 |
+
question, model, answer, judge, ref_answer, multi_turn = (
|
196 |
+
match.question,
|
197 |
+
match.model,
|
198 |
+
match.answer,
|
199 |
+
match.judge,
|
200 |
+
match.ref_answer,
|
201 |
+
match.multi_turn,
|
202 |
+
)
|
203 |
+
|
204 |
+
if judge.prompt_template["type"] == "single":
|
205 |
+
score, user_prompt, judgment = run_judge_single(
|
206 |
+
question, answer, judge, ref_answer, multi_turn=multi_turn
|
207 |
+
)
|
208 |
+
|
209 |
+
question_id = question["question_id"]
|
210 |
+
turn = 1 if not multi_turn else 2
|
211 |
+
result = {
|
212 |
+
"question_id": question_id,
|
213 |
+
"model": model,
|
214 |
+
"judge": (judge.model_name, judge.prompt_template["name"]),
|
215 |
+
"user_prompt": user_prompt,
|
216 |
+
"judgment": judgment,
|
217 |
+
"score": score,
|
218 |
+
"turn": turn,
|
219 |
+
"tstamp": time.time(),
|
220 |
+
}
|
221 |
+
print(
|
222 |
+
f"question: {question_id}, turn: {turn}, model: {model}, "
|
223 |
+
f"score: {score}, "
|
224 |
+
f"judge: {(judge.model_name, judge.prompt_template['name'])}"
|
225 |
+
)
|
226 |
+
else:
|
227 |
+
raise ValueError(f"invalid judge type: {judge['type']}")
|
228 |
+
|
229 |
+
if output_file:
|
230 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
231 |
+
with open(output_file, "a") as fout:
|
232 |
+
fout.write(json.dumps(result) + "\n")
|
233 |
+
|
234 |
+
return result
|
235 |
+
|
236 |
+
|
237 |
+
def run_judge_pair(question, answer_a, answer_b, judge, ref_answer, multi_turn=False):
|
238 |
+
kwargs = {}
|
239 |
+
model = judge.model_name
|
240 |
+
if ref_answer is not None:
|
241 |
+
kwargs["ref_answer_1"] = ref_answer["choices"][0]["turns"][0]
|
242 |
+
if multi_turn:
|
243 |
+
kwargs["ref_answer_2"] = ref_answer["choices"][0]["turns"][1]
|
244 |
+
|
245 |
+
if multi_turn:
|
246 |
+
system_prompt = judge.prompt_template["system_prompt"]
|
247 |
+
user_prompt = judge.prompt_template["prompt_template"].format(
|
248 |
+
question_1=question["turns"][0],
|
249 |
+
question_2=question["turns"][1],
|
250 |
+
answer_a_1=answer_a["choices"][0]["turns"][0],
|
251 |
+
answer_b_1=answer_b["choices"][0]["turns"][0],
|
252 |
+
answer_a_2=answer_a["choices"][0]["turns"][1],
|
253 |
+
answer_b_2=answer_b["choices"][0]["turns"][1],
|
254 |
+
**kwargs,
|
255 |
+
)
|
256 |
+
else:
|
257 |
+
system_prompt = judge.prompt_template["system_prompt"]
|
258 |
+
user_prompt = judge.prompt_template["prompt_template"].format(
|
259 |
+
question=question["turns"][0],
|
260 |
+
answer_a=answer_a["choices"][0]["turns"][0],
|
261 |
+
answer_b=answer_b["choices"][0]["turns"][0],
|
262 |
+
**kwargs,
|
263 |
+
)
|
264 |
+
|
265 |
+
winner = "error"
|
266 |
+
|
267 |
+
conv = get_conversation_template(model)
|
268 |
+
conv.append_message(conv.roles[0], user_prompt)
|
269 |
+
conv.append_message(conv.roles[1], None)
|
270 |
+
|
271 |
+
if model in ["gpt-3.5-turbo", "gpt-4"]:
|
272 |
+
conv.set_system_message(system_prompt)
|
273 |
+
judgment = chat_compeletion_openai(model, conv, temperature=0, max_tokens=2048)
|
274 |
+
elif model in ANTHROPIC_MODEL_LIST:
|
275 |
+
if system_prompt != "You are a helpful assistant.":
|
276 |
+
user_prompt = "[Instruction]\n" + system_prompt + "\n\n" + user_prompt
|
277 |
+
conv.messages[0][1] = user_prompt
|
278 |
+
judgment = chat_compeletion_anthropic(
|
279 |
+
model, conv, temperature=0, max_tokens=1024
|
280 |
+
)
|
281 |
+
else:
|
282 |
+
raise ValueError(f"Invalid judge model name: {model}")
|
283 |
+
|
284 |
+
if judge.prompt_template["output_format"] == "[[A]]":
|
285 |
+
if "[[A]]" in judgment:
|
286 |
+
winner = "A"
|
287 |
+
elif "[[B]]" in judgment:
|
288 |
+
winner = "B"
|
289 |
+
elif "[[C]]" in judgment:
|
290 |
+
winner = "tie"
|
291 |
+
else:
|
292 |
+
winner = "error"
|
293 |
+
elif judge.prompt_template["output_format"] == "[[rating_a,rating_b]]":
|
294 |
+
match = re.search(two_score_pattern, judgment)
|
295 |
+
if not match:
|
296 |
+
match = re.search(two_score_pattern_backup, judgment)
|
297 |
+
if match:
|
298 |
+
scores = [ast.literal_eval(s.strip()) for s in match.groups()]
|
299 |
+
if abs(scores[0] - scores[1]) <= TIE_DELTA:
|
300 |
+
winner = "tie"
|
301 |
+
elif scores[0] > scores[1]:
|
302 |
+
winner = "A"
|
303 |
+
else:
|
304 |
+
winner = "B"
|
305 |
+
else:
|
306 |
+
winner = "error"
|
307 |
+
else:
|
308 |
+
raise ValueError(
|
309 |
+
f"invalid output format: {judge.prompt_template['output_format']}"
|
310 |
+
)
|
311 |
+
|
312 |
+
return winner, user_prompt, judgment
|
313 |
+
|
314 |
+
|
315 |
+
def play_a_match_pair(match: MatchPair, output_file: str):
|
316 |
+
question, model_1, model_2, answer_1, answer_2, judge, ref_answer, multi_turn = (
|
317 |
+
match.question,
|
318 |
+
match.model_1,
|
319 |
+
match.model_2,
|
320 |
+
match.answer_1,
|
321 |
+
match.answer_2,
|
322 |
+
match.judge,
|
323 |
+
match.ref_answer,
|
324 |
+
match.multi_turn,
|
325 |
+
)
|
326 |
+
|
327 |
+
if judge.prompt_template["type"] == "pairwise":
|
328 |
+
g1_winner, g1_user_prompt, g1_judgment = run_judge_pair(
|
329 |
+
question, answer_1, answer_2, judge, ref_answer, multi_turn=multi_turn
|
330 |
+
)
|
331 |
+
g2_winner, g2_user_prompt, g2_judgment = run_judge_pair(
|
332 |
+
question, answer_2, answer_1, judge, ref_answer, multi_turn=multi_turn
|
333 |
+
)
|
334 |
+
|
335 |
+
g1_map = {"A": "model_1", "B": "model_2"}
|
336 |
+
g2_map = {"A": "model_2", "B": "model_1"}
|
337 |
+
g1_winner = g1_map.get(g1_winner, g1_winner)
|
338 |
+
g2_winner = g2_map.get(g2_winner, g2_winner)
|
339 |
+
question_id = question["question_id"]
|
340 |
+
turn = 1 if not multi_turn else 2
|
341 |
+
|
342 |
+
result = {
|
343 |
+
"question_id": question_id,
|
344 |
+
"model_1": model_1,
|
345 |
+
"model_2": model_2,
|
346 |
+
"g1_winner": g1_winner,
|
347 |
+
"g2_winner": g2_winner,
|
348 |
+
"judge": (judge.model_name, judge.prompt_template["name"]),
|
349 |
+
"g1_user_prompt": g1_user_prompt,
|
350 |
+
"g1_judgment": g1_judgment,
|
351 |
+
"g2_user_prompt": g2_user_prompt,
|
352 |
+
"g2_judgment": g2_judgment,
|
353 |
+
"turn": turn,
|
354 |
+
"tstamp": time.time(),
|
355 |
+
}
|
356 |
+
|
357 |
+
print(
|
358 |
+
f"question: {question_id}, turn: {turn}, model_1: {model_1}, model_2: {model_2}, "
|
359 |
+
f"g1_winner: {g1_winner}, g2_winner: {g2_winner}, "
|
360 |
+
f"judge: {(judge.model_name, judge.prompt_template['name'])}"
|
361 |
+
)
|
362 |
+
elif judge.prompt_template["type"] == "single":
|
363 |
+
m1_score, m1_user_prompt, m1_judgment = run_judge_single(
|
364 |
+
question, answer_1, judge
|
365 |
+
)
|
366 |
+
m2_score, m2_user_prompt, m2_judgment = run_judge_single(
|
367 |
+
question, answer_2, judge
|
368 |
+
)
|
369 |
+
|
370 |
+
if abs(m1_score - m2_score) <= TIE_DELTA:
|
371 |
+
winner = "tie"
|
372 |
+
elif m1_score > m2_score:
|
373 |
+
winner = "model_1"
|
374 |
+
else:
|
375 |
+
winner = "model_2"
|
376 |
+
|
377 |
+
question_id = question["question_id"]
|
378 |
+
result = {
|
379 |
+
"question_id": question_id,
|
380 |
+
"model_1": model_1,
|
381 |
+
"model_2": model_2,
|
382 |
+
"g1_winner": winner,
|
383 |
+
"g2_winner": winner,
|
384 |
+
"judge": (judge.model_name, judge.prompt_template["name"]),
|
385 |
+
"g1_user_prompt": m1_user_prompt,
|
386 |
+
"g1_judgment": m1_judgment,
|
387 |
+
"g2_user_prompt": m2_user_prompt,
|
388 |
+
"g2_judgment": m2_judgment,
|
389 |
+
"m1_score": m1_score,
|
390 |
+
"m2_score": m2_score,
|
391 |
+
"tstamp": time.time(),
|
392 |
+
}
|
393 |
+
print(
|
394 |
+
f"question: {question_id}, model_1: {model_1}, model_2: {model_2}, "
|
395 |
+
f"winner: {winner}, m1_score: {m1_score}, m2_score: {m2_score}, "
|
396 |
+
f"judge: {(judge.model_name, judge.prompt_template['name'])}"
|
397 |
+
)
|
398 |
+
else:
|
399 |
+
raise ValueError(f"invalid judge type: {judge['type']}")
|
400 |
+
|
401 |
+
if output_file:
|
402 |
+
os.makedirs(os.path.dirname(output_file), exist_ok=True)
|
403 |
+
with open(output_file, "a") as fout:
|
404 |
+
fout.write(json.dumps(result) + "\n")
|
405 |
+
|
406 |
+
return result
|
407 |
+
|
408 |
+
|
409 |
+
def chat_compeletion_openai(model, conv, temperature, max_tokens, api_dict=None):
|
410 |
+
if api_dict is not None:
|
411 |
+
openai.api_base = api_dict["api_base"]
|
412 |
+
openai.api_key = api_dict["api_key"]
|
413 |
+
output = API_ERROR_OUTPUT
|
414 |
+
for _ in range(API_MAX_RETRY):
|
415 |
+
try:
|
416 |
+
messages = conv.to_openai_api_messages()
|
417 |
+
response = openai.ChatCompletion.create(
|
418 |
+
model=model,
|
419 |
+
messages=messages,
|
420 |
+
n=1,
|
421 |
+
temperature=temperature,
|
422 |
+
max_tokens=max_tokens,
|
423 |
+
)
|
424 |
+
output = response["choices"][0]["message"]["content"]
|
425 |
+
break
|
426 |
+
except openai.error.OpenAIError as e:
|
427 |
+
print(type(e), e)
|
428 |
+
time.sleep(API_RETRY_SLEEP)
|
429 |
+
|
430 |
+
return output
|
431 |
+
|
432 |
+
|
433 |
+
def chat_compeletion_openai_azure(model, conv, temperature, max_tokens, api_dict=None):
|
434 |
+
openai.api_type = "azure"
|
435 |
+
openai.api_version = "2023-07-01-preview"
|
436 |
+
if api_dict is not None:
|
437 |
+
openai.api_base = api_dict["api_base"]
|
438 |
+
openai.api_key = api_dict["api_key"]
|
439 |
+
else:
|
440 |
+
openai.api_base = os.environ["AZURE_OPENAI_ENDPOINT"]
|
441 |
+
openai.api_key = os.environ["AZURE_OPENAI_KEY"]
|
442 |
+
|
443 |
+
if "azure-" in model:
|
444 |
+
model = model[6:]
|
445 |
+
|
446 |
+
output = API_ERROR_OUTPUT
|
447 |
+
for _ in range(API_MAX_RETRY):
|
448 |
+
try:
|
449 |
+
messages = conv.to_openai_api_messages()
|
450 |
+
response = openai.ChatCompletion.create(
|
451 |
+
engine=model,
|
452 |
+
messages=messages,
|
453 |
+
n=1,
|
454 |
+
temperature=temperature,
|
455 |
+
max_tokens=max_tokens,
|
456 |
+
)
|
457 |
+
output = response["choices"][0]["message"]["content"]
|
458 |
+
break
|
459 |
+
except openai.error.OpenAIError as e:
|
460 |
+
print(type(e), e)
|
461 |
+
time.sleep(API_RETRY_SLEEP)
|
462 |
+
except openai.error.InvalidRequestError as e:
|
463 |
+
print(type(e), e)
|
464 |
+
break
|
465 |
+
except KeyError:
|
466 |
+
print(response)
|
467 |
+
break
|
468 |
+
|
469 |
+
return output
|
470 |
+
|
471 |
+
|
472 |
+
def chat_compeletion_anthropic(model, conv, temperature, max_tokens):
|
473 |
+
output = API_ERROR_OUTPUT
|
474 |
+
for _ in range(API_MAX_RETRY):
|
475 |
+
try:
|
476 |
+
c = anthropic.Anthropic(api_key=os.environ["ANTHROPIC_API_KEY"])
|
477 |
+
prompt = conv.get_prompt()
|
478 |
+
response = c.completions.create(
|
479 |
+
model=model,
|
480 |
+
prompt=prompt,
|
481 |
+
stop_sequences=[anthropic.HUMAN_PROMPT],
|
482 |
+
max_tokens_to_sample=max_tokens,
|
483 |
+
temperature=temperature,
|
484 |
+
)
|
485 |
+
output = response.completion
|
486 |
+
break
|
487 |
+
except anthropic.APIError as e:
|
488 |
+
print(type(e), e)
|
489 |
+
time.sleep(API_RETRY_SLEEP)
|
490 |
+
return output.strip()
|
491 |
+
|
492 |
+
|
493 |
+
def chat_compeletion_palm(chat_state, model, conv, temperature, max_tokens):
|
494 |
+
from fastchat.serve.api_provider import init_palm_chat
|
495 |
+
|
496 |
+
assert model == "palm-2-chat-bison-001"
|
497 |
+
|
498 |
+
if chat_state is None:
|
499 |
+
chat_state = init_palm_chat("chat-bison@001")
|
500 |
+
|
501 |
+
parameters = {
|
502 |
+
"temperature": temperature,
|
503 |
+
"top_p": 0.8,
|
504 |
+
"top_k": 40,
|
505 |
+
"max_output_tokens": max_tokens,
|
506 |
+
}
|
507 |
+
output = API_ERROR_OUTPUT
|
508 |
+
for _ in range(API_MAX_RETRY):
|
509 |
+
try:
|
510 |
+
response = chat_state.send_message(conv.messages[-2][1], **parameters)
|
511 |
+
output = response.text
|
512 |
+
break
|
513 |
+
except Exception as e:
|
514 |
+
print(type(e), e)
|
515 |
+
time.sleep(API_RETRY_SLEEP)
|
516 |
+
return chat_state, output
|
517 |
+
|
518 |
+
|
519 |
+
def chat_compeletion_mistral(model, conv, temperature, max_tokens):
|
520 |
+
output = API_ERROR_OUTPUT
|
521 |
+
for _ in range(API_MAX_RETRY):
|
522 |
+
try:
|
523 |
+
c = MistralClient(api_key=os.environ["MISTRAL_API_KEY"])
|
524 |
+
messages = conv.to_mistralai_api_messages()
|
525 |
+
response = c.chat(
|
526 |
+
model=model,
|
527 |
+
messages=messages,
|
528 |
+
temperature=temperature,
|
529 |
+
max_tokens=max_tokens,
|
530 |
+
)
|
531 |
+
output = response.choices[0].message.content
|
532 |
+
break
|
533 |
+
except Exception as e:
|
534 |
+
print(type(e), e)
|
535 |
+
time.sleep(API_RETRY_SLEEP)
|
536 |
+
return output
|
537 |
+
|
538 |
+
|
539 |
+
def normalize_game_key_single(gamekey, result):
|
540 |
+
"""Make the model names sorted in a game key."""
|
541 |
+
qid, model_1, model_2 = gamekey
|
542 |
+
if model_1 < model_2:
|
543 |
+
return gamekey, result
|
544 |
+
else:
|
545 |
+
new_gamekey = (qid, model_2, model_1)
|
546 |
+
new_result = {
|
547 |
+
"winners": tuple(reverse_model_map.get(x, x) for x in result["winners"]),
|
548 |
+
"g1_judgment": result["g2_judgment"],
|
549 |
+
"g2_judgment": result["g1_judgment"],
|
550 |
+
}
|
551 |
+
return new_gamekey, new_result
|
552 |
+
|
553 |
+
|
554 |
+
def normalize_game_key_dict(judgment_dict):
|
555 |
+
"""Make the model names sorted in the game keys."""
|
556 |
+
ret = {}
|
557 |
+
for key, value in judgment_dict.items():
|
558 |
+
new_key, new_value = normalize_game_key_single(key, value)
|
559 |
+
ret[new_key] = new_value
|
560 |
+
return ret
|
561 |
+
|
562 |
+
|
563 |
+
def load_pairwise_model_judgments(filename: str):
|
564 |
+
"""Load model judgments.
|
565 |
+
|
566 |
+
The return value is a dict of type:
|
567 |
+
Dict[judge: Tuple -> Dict[game_key: tuple -> game_result: dict]
|
568 |
+
"""
|
569 |
+
judge_dict = {}
|
570 |
+
|
571 |
+
for line in open(filename):
|
572 |
+
obj = json.loads(line)
|
573 |
+
judge = tuple(obj["judge"])
|
574 |
+
qid, model_1, model_2 = obj["question_id"], obj["model_1"], obj["model_2"]
|
575 |
+
|
576 |
+
if judge not in judge_dict:
|
577 |
+
judge_dict[judge] = {}
|
578 |
+
|
579 |
+
if "winner" in obj:
|
580 |
+
winner = obj["winner"]
|
581 |
+
elif "g1_winner" in obj and "g2_winner" in obj:
|
582 |
+
g1_winner, g2_winner = obj["g1_winner"], obj["g2_winner"]
|
583 |
+
if g1_winner == g2_winner:
|
584 |
+
winner = g1_winner
|
585 |
+
else:
|
586 |
+
winner = "inconsistent"
|
587 |
+
else:
|
588 |
+
raise ValueError(f"Invalid keys: {list(obj.keys())}")
|
589 |
+
|
590 |
+
gamekey = (qid, model_1, model_2)
|
591 |
+
winners = (winner,)
|
592 |
+
|
593 |
+
judge_dict[judge][gamekey] = {
|
594 |
+
"winners": winners,
|
595 |
+
"g1_judgment": obj["g1_judgment"],
|
596 |
+
"g2_judgment": obj["g2_judgment"],
|
597 |
+
}
|
598 |
+
|
599 |
+
# Make the model names sorted in the game keys
|
600 |
+
normalized = {}
|
601 |
+
for judge, value in judge_dict.items():
|
602 |
+
normalized[judge] = normalize_game_key_dict(value)
|
603 |
+
return normalized
|
604 |
+
|
605 |
+
|
606 |
+
def load_single_model_judgments(filename: str):
|
607 |
+
"""Load model judgments.
|
608 |
+
|
609 |
+
The return value is a dict of type:
|
610 |
+
Dict[judge: Tuple -> Dict[game_key: tuple -> game_result: dict]
|
611 |
+
"""
|
612 |
+
judge_dict = {}
|
613 |
+
|
614 |
+
for line in open(filename):
|
615 |
+
obj = json.loads(line)
|
616 |
+
judge = tuple(obj["judge"])
|
617 |
+
qid, model = obj["question_id"], obj["model"]
|
618 |
+
|
619 |
+
if judge not in judge_dict:
|
620 |
+
judge_dict[judge] = {}
|
621 |
+
|
622 |
+
gamekey = (qid, model)
|
623 |
+
|
624 |
+
judge_dict[judge][gamekey] = {
|
625 |
+
"score": obj["score"],
|
626 |
+
"judgment": obj["judgment"],
|
627 |
+
}
|
628 |
+
return judge_dict
|
629 |
+
|
630 |
+
|
631 |
+
def resolve_pairwise_judgment_dict(
|
632 |
+
question, model_judgments_normal, model_judgments_math, multi_turn=False
|
633 |
+
):
|
634 |
+
"""Return the correct pairwise judge."""
|
635 |
+
if multi_turn:
|
636 |
+
if question["category"] in NEED_REF_CATS:
|
637 |
+
return model_judgments_math[("gpt-4", "pair-math-v1-multi-turn")]
|
638 |
+
return model_judgments_normal[("gpt-4", "pair-v2-multi-turn")]
|
639 |
+
|
640 |
+
if question["category"] in NEED_REF_CATS:
|
641 |
+
return model_judgments_math[("gpt-4", "pair-math-v1")]
|
642 |
+
else:
|
643 |
+
return model_judgments_normal[("gpt-4", "pair-v2")]
|
644 |
+
|
645 |
+
|
646 |
+
def resolve_single_judgment_dict(
|
647 |
+
question, model_judgments_normal, model_judgments_math, multi_turn=False
|
648 |
+
):
|
649 |
+
"""Return the correct single answer grading judge."""
|
650 |
+
if multi_turn:
|
651 |
+
if question["category"] in NEED_REF_CATS:
|
652 |
+
return model_judgments_math[("gpt-4", "single-math-v1-multi-turn")]
|
653 |
+
return model_judgments_normal[("gpt-4", "single-v1-multi-turn")]
|
654 |
+
|
655 |
+
if question["category"] in NEED_REF_CATS:
|
656 |
+
return model_judgments_math[("gpt-4", "single-math-v1")]
|
657 |
+
else:
|
658 |
+
return model_judgments_normal[("gpt-4", "single-v1")]
|
659 |
+
|
660 |
+
|
661 |
+
def get_pairwise_judge_explanation(gamekey, judgment_dict):
|
662 |
+
"""Get model judge explanation."""
|
663 |
+
try:
|
664 |
+
qid, model_1, model_2 = gamekey
|
665 |
+
if model_1 < model_2:
|
666 |
+
res = judgment_dict[gamekey]
|
667 |
+
g1_judgment, g2_judgment = res["g1_judgment"], res["g2_judgment"]
|
668 |
+
else:
|
669 |
+
new_gamekey = (qid, model_2, model_1)
|
670 |
+
res = judgment_dict[new_gamekey]
|
671 |
+
|
672 |
+
model_1, model_2 = model_1, model_2
|
673 |
+
g1_judgment, g2_judgment = res["g2_judgment"], res["g1_judgment"]
|
674 |
+
|
675 |
+
return (
|
676 |
+
f"**Game 1**. **A**: {model_1}, **B**: {model_2}\n\n"
|
677 |
+
f"**Judgment**: {g1_judgment}"
|
678 |
+
+ f"\n\n`--------------------------`\n\n"
|
679 |
+
+ f"**Game 2**. **A**: {model_2}, **B**: {model_1}\n\n"
|
680 |
+
f"**Judgment**: {g2_judgment}"
|
681 |
+
)
|
682 |
+
except KeyError:
|
683 |
+
return "N/A"
|
684 |
+
|
685 |
+
|
686 |
+
def get_single_judge_explanation(gamekey, judgment_dict):
|
687 |
+
"""Get model judge explanation."""
|
688 |
+
try:
|
689 |
+
qid, model = gamekey
|
690 |
+
|
691 |
+
res = judgment_dict[gamekey]
|
692 |
+
|
693 |
+
g1_judgment = res["judgment"]
|
694 |
+
g1_score = res["score"]
|
695 |
+
|
696 |
+
return (
|
697 |
+
f"**Game 1**. **A**: {model}, **Score**: {g1_score}\n\n"
|
698 |
+
f"**Judgment**: {g1_judgment}"
|
699 |
+
)
|
700 |
+
except KeyError:
|
701 |
+
return "N/A"
|
702 |
+
|
703 |
+
|
704 |
+
def check_data(questions, model_answers, ref_answers, models, judges):
|
705 |
+
# check model answers
|
706 |
+
for m in models:
|
707 |
+
assert m in model_answers, f"Missing model answer for {m}"
|
708 |
+
m_answer = model_answers[m]
|
709 |
+
for q in questions:
|
710 |
+
assert (
|
711 |
+
q["question_id"] in m_answer
|
712 |
+
), f"Missing model {m}'s answer to Question {q['question_id']}"
|
713 |
+
# check ref answers
|
714 |
+
for jg in judges.values():
|
715 |
+
if not jg.ref_based:
|
716 |
+
continue
|
717 |
+
for q in questions:
|
718 |
+
if q["category"] not in NEED_REF_CATS:
|
719 |
+
continue
|
720 |
+
assert (
|
721 |
+
q["question_id"] in ref_answers[jg.model_name]
|
722 |
+
), f"Missing reference answer to Question {q['question_id']} for judge {jg.model_name}"
|
723 |
+
|
724 |
+
|
725 |
+
def get_model_list(answer_dir):
|
726 |
+
file_paths = glob.glob(f"{answer_dir}/*.jsonl")
|
727 |
+
file_names = [os.path.splitext(os.path.basename(f))[0] for f in file_paths]
|
728 |
+
return file_names
|
qa_browser.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Usage:
|
3 |
+
python3 qa_browser.py --share
|
4 |
+
"""
|
5 |
+
|
6 |
+
import argparse
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
from collections import defaultdict
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
from common import (
|
13 |
+
get_pairwise_judge_explanation,
|
14 |
+
get_single_judge_explanation,
|
15 |
+
load_model_answers,
|
16 |
+
load_pairwise_model_judgments,
|
17 |
+
load_questions,
|
18 |
+
load_single_model_judgments,
|
19 |
+
resolve_pairwise_judgment_dict,
|
20 |
+
resolve_single_judgment_dict,
|
21 |
+
)
|
22 |
+
from huggingface_hub import snapshot_download
|
23 |
+
|
24 |
+
questions = []
|
25 |
+
model_answers = {}
|
26 |
+
|
27 |
+
model_judgments_normal_single = {}
|
28 |
+
model_judgments_math_single = {}
|
29 |
+
|
30 |
+
model_judgments_normal_pairwise = {}
|
31 |
+
model_judgments_math_pairwise = {}
|
32 |
+
|
33 |
+
question_selector_map = {}
|
34 |
+
category_selector_map = defaultdict(list)
|
35 |
+
|
36 |
+
|
37 |
+
def display_question(category_selector, request: gr.Request):
|
38 |
+
choices = category_selector_map[category_selector]
|
39 |
+
return gr.Dropdown.update(
|
40 |
+
value=choices[0],
|
41 |
+
choices=choices,
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
def display_pairwise_answer(
|
46 |
+
question_selector, model_selector1, model_selector2, request: gr.Request
|
47 |
+
):
|
48 |
+
q = question_selector_map[question_selector]
|
49 |
+
qid = q["question_id"]
|
50 |
+
|
51 |
+
ans1 = model_answers[model_selector1][qid]
|
52 |
+
ans2 = model_answers[model_selector2][qid]
|
53 |
+
|
54 |
+
chat_mds = pairwise_to_gradio_chat_mds(q, ans1, ans2)
|
55 |
+
gamekey = (qid, model_selector1, model_selector2)
|
56 |
+
|
57 |
+
judgment_dict = resolve_pairwise_judgment_dict(
|
58 |
+
q,
|
59 |
+
model_judgments_normal_pairwise,
|
60 |
+
model_judgments_math_pairwise,
|
61 |
+
multi_turn=False,
|
62 |
+
)
|
63 |
+
|
64 |
+
explanation = (
|
65 |
+
"##### Model Judgment (first turn)\n"
|
66 |
+
+ get_pairwise_judge_explanation(gamekey, judgment_dict)
|
67 |
+
)
|
68 |
+
|
69 |
+
judgment_dict_turn2 = resolve_pairwise_judgment_dict(
|
70 |
+
q,
|
71 |
+
model_judgments_normal_pairwise,
|
72 |
+
model_judgments_math_pairwise,
|
73 |
+
multi_turn=True,
|
74 |
+
)
|
75 |
+
|
76 |
+
explanation_turn2 = (
|
77 |
+
"##### Model Judgment (second turn)\n"
|
78 |
+
+ get_pairwise_judge_explanation(gamekey, judgment_dict_turn2)
|
79 |
+
)
|
80 |
+
|
81 |
+
return chat_mds + [explanation] + [explanation_turn2]
|
82 |
+
|
83 |
+
|
84 |
+
def display_single_answer(question_selector, model_selector1, request: gr.Request):
|
85 |
+
q = question_selector_map[question_selector]
|
86 |
+
qid = q["question_id"]
|
87 |
+
|
88 |
+
ans1 = model_answers[model_selector1][qid]
|
89 |
+
|
90 |
+
chat_mds = single_to_gradio_chat_mds(q, ans1)
|
91 |
+
gamekey = (qid, model_selector1)
|
92 |
+
|
93 |
+
judgment_dict = resolve_single_judgment_dict(
|
94 |
+
q, model_judgments_normal_single, model_judgments_math_single, multi_turn=False
|
95 |
+
)
|
96 |
+
|
97 |
+
explanation = "##### Model Judgment (first turn)\n" + get_single_judge_explanation(
|
98 |
+
gamekey, judgment_dict
|
99 |
+
)
|
100 |
+
|
101 |
+
judgment_dict_turn2 = resolve_single_judgment_dict(
|
102 |
+
q, model_judgments_normal_single, model_judgments_math_single, multi_turn=True
|
103 |
+
)
|
104 |
+
|
105 |
+
explanation_turn2 = (
|
106 |
+
"##### Model Judgment (second turn)\n"
|
107 |
+
+ get_single_judge_explanation(gamekey, judgment_dict_turn2)
|
108 |
+
)
|
109 |
+
|
110 |
+
return chat_mds + [explanation] + [explanation_turn2]
|
111 |
+
|
112 |
+
|
113 |
+
newline_pattern1 = re.compile("\n\n(\d+\. )")
|
114 |
+
newline_pattern2 = re.compile("\n\n(- )")
|
115 |
+
|
116 |
+
|
117 |
+
def post_process_answer(x):
|
118 |
+
"""Fix Markdown rendering problems."""
|
119 |
+
x = x.replace("\u2022", "- ")
|
120 |
+
x = re.sub(newline_pattern1, "\n\g<1>", x)
|
121 |
+
x = re.sub(newline_pattern2, "\n\g<1>", x)
|
122 |
+
return x
|
123 |
+
|
124 |
+
|
125 |
+
def pairwise_to_gradio_chat_mds(question, ans_a, ans_b, turn=None):
|
126 |
+
end = len(question["turns"]) if turn is None else turn + 1
|
127 |
+
|
128 |
+
mds = ["", "", "", "", "", "", ""]
|
129 |
+
for i in range(end):
|
130 |
+
base = i * 3
|
131 |
+
if i == 0:
|
132 |
+
mds[base + 0] = "##### User\n" + question["turns"][i]
|
133 |
+
else:
|
134 |
+
mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i]
|
135 |
+
mds[base + 1] = "##### Assistant A\n" + post_process_answer(
|
136 |
+
ans_a["choices"][0]["turns"][i].strip()
|
137 |
+
)
|
138 |
+
mds[base + 2] = "##### Assistant B\n" + post_process_answer(
|
139 |
+
ans_b["choices"][0]["turns"][i].strip()
|
140 |
+
)
|
141 |
+
|
142 |
+
ref = question.get("reference", ["", ""])
|
143 |
+
|
144 |
+
ref_md = ""
|
145 |
+
if turn is None:
|
146 |
+
if ref[0] != "" or ref[1] != "":
|
147 |
+
mds[6] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}"
|
148 |
+
else:
|
149 |
+
x = ref[turn] if turn < len(ref) else ""
|
150 |
+
if x:
|
151 |
+
mds[6] = f"##### Reference Solution\n{ref[turn]}"
|
152 |
+
else:
|
153 |
+
mds[6] = ""
|
154 |
+
return mds
|
155 |
+
|
156 |
+
|
157 |
+
def single_to_gradio_chat_mds(question, ans, turn=None):
|
158 |
+
end = len(question["turns"]) if turn is None else turn + 1
|
159 |
+
|
160 |
+
mds = ["", "", "", "", ""]
|
161 |
+
for i in range(end):
|
162 |
+
base = i * 2
|
163 |
+
if i == 0:
|
164 |
+
mds[base + 0] = "##### User\n" + question["turns"][i]
|
165 |
+
else:
|
166 |
+
mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i]
|
167 |
+
mds[base + 1] = "##### Assistant A\n" + post_process_answer(
|
168 |
+
ans["choices"][0]["turns"][i].strip()
|
169 |
+
)
|
170 |
+
|
171 |
+
# ref = question.get("reference", ["", ""])
|
172 |
+
# tmp fix
|
173 |
+
ref = question.get("reference", ["", ""]) or ["", ""]
|
174 |
+
|
175 |
+
ref_md = ""
|
176 |
+
if turn is None:
|
177 |
+
if ref[0] != "" or ref[1] != "":
|
178 |
+
# mds[4] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}"
|
179 |
+
mds[4] = f"##### Reference Solution\n***Q1***. {ref[0]}\n\n\n***Q2***. {ref[1]}"
|
180 |
+
else:
|
181 |
+
x = ref[turn] if turn < len(ref) else ""
|
182 |
+
if x:
|
183 |
+
mds[4] = f"##### Reference Solution\n{ref[turn]}"
|
184 |
+
else:
|
185 |
+
mds[4] = ""
|
186 |
+
return mds
|
187 |
+
|
188 |
+
|
189 |
+
def build_question_selector_map():
|
190 |
+
global question_selector_map, category_selector_map
|
191 |
+
|
192 |
+
# Build question selector map
|
193 |
+
for q in questions:
|
194 |
+
preview = f"{q['question_id']}: " + q["turns"][0][:128] + "..."
|
195 |
+
question_selector_map[preview] = q
|
196 |
+
category_selector_map[q["category"]].append(preview)
|
197 |
+
|
198 |
+
|
199 |
+
def sort_models(models):
|
200 |
+
priority = {
|
201 |
+
"vigostral-7b-chat": "aaaa",
|
202 |
+
"gpt-4-0314": "aaab",
|
203 |
+
"gpt-3.5-turbo-0613": "aaac",
|
204 |
+
"mixtral-8x7b-instruct-v0.1": "aaad",
|
205 |
+
"mistral-medium": "aaae",
|
206 |
+
}
|
207 |
+
|
208 |
+
models = list(models)
|
209 |
+
models.sort(key=lambda x: priority.get(x, x))
|
210 |
+
return models
|
211 |
+
|
212 |
+
|
213 |
+
def build_pairwise_browser_tab():
|
214 |
+
global question_selector_map, category_selector_map
|
215 |
+
|
216 |
+
# models = list(model_answers.keys())
|
217 |
+
models = sort_models(list(model_answers.keys()))
|
218 |
+
num_sides = 2
|
219 |
+
num_turns = 2
|
220 |
+
side_names = ["A", "B"]
|
221 |
+
|
222 |
+
question_selector_choices = list(question_selector_map.keys())
|
223 |
+
category_selector_choices = list(category_selector_map.keys())
|
224 |
+
|
225 |
+
# Selectors
|
226 |
+
with gr.Row():
|
227 |
+
with gr.Column(scale=1, min_width=200):
|
228 |
+
category_selector = gr.Dropdown(
|
229 |
+
choices=category_selector_choices, label="Category", container=False
|
230 |
+
)
|
231 |
+
with gr.Column(scale=100):
|
232 |
+
question_selector = gr.Dropdown(
|
233 |
+
choices=question_selector_choices, label="Question", container=False
|
234 |
+
)
|
235 |
+
|
236 |
+
model_selectors = [None] * num_sides
|
237 |
+
with gr.Row():
|
238 |
+
for i in range(num_sides):
|
239 |
+
with gr.Column():
|
240 |
+
if i == 0:
|
241 |
+
value = models[0]
|
242 |
+
else:
|
243 |
+
value = "gpt-3.5-turbo"
|
244 |
+
model_selectors[i] = gr.Dropdown(
|
245 |
+
choices=models,
|
246 |
+
value=value,
|
247 |
+
label=f"Model {side_names[i]}",
|
248 |
+
container=False,
|
249 |
+
)
|
250 |
+
|
251 |
+
# Conversation
|
252 |
+
chat_mds = []
|
253 |
+
for i in range(num_turns):
|
254 |
+
chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}"))
|
255 |
+
with gr.Row():
|
256 |
+
for j in range(num_sides):
|
257 |
+
with gr.Column(scale=100):
|
258 |
+
chat_mds.append(gr.Markdown())
|
259 |
+
|
260 |
+
if j == 0:
|
261 |
+
with gr.Column(scale=1, min_width=8):
|
262 |
+
gr.Markdown()
|
263 |
+
reference = gr.Markdown(elem_id=f"reference")
|
264 |
+
chat_mds.append(reference)
|
265 |
+
|
266 |
+
model_explanation = gr.Markdown(elem_id="model_explanation")
|
267 |
+
model_explanation2 = gr.Markdown(elem_id="model_explanation")
|
268 |
+
|
269 |
+
# Callbacks
|
270 |
+
category_selector.change(display_question, [category_selector], [question_selector])
|
271 |
+
question_selector.change(
|
272 |
+
display_pairwise_answer,
|
273 |
+
[question_selector] + model_selectors,
|
274 |
+
chat_mds + [model_explanation] + [model_explanation2],
|
275 |
+
)
|
276 |
+
|
277 |
+
for i in range(num_sides):
|
278 |
+
model_selectors[i].change(
|
279 |
+
display_pairwise_answer,
|
280 |
+
[question_selector] + model_selectors,
|
281 |
+
chat_mds + [model_explanation] + [model_explanation2],
|
282 |
+
)
|
283 |
+
|
284 |
+
return (category_selector,)
|
285 |
+
|
286 |
+
|
287 |
+
def build_single_answer_browser_tab():
|
288 |
+
global question_selector_map, category_selector_map
|
289 |
+
|
290 |
+
# models = list(model_answers.keys())
|
291 |
+
models = sort_models(list(model_answers.keys()))
|
292 |
+
num_sides = 1
|
293 |
+
num_turns = 2
|
294 |
+
side_names = ["A"]
|
295 |
+
|
296 |
+
question_selector_choices = list(question_selector_map.keys())
|
297 |
+
category_selector_choices = list(category_selector_map.keys())
|
298 |
+
|
299 |
+
# Selectors
|
300 |
+
with gr.Row():
|
301 |
+
with gr.Column(scale=1, min_width=200):
|
302 |
+
category_selector = gr.Dropdown(
|
303 |
+
choices=category_selector_choices, label="Category", container=False
|
304 |
+
)
|
305 |
+
with gr.Column(scale=100):
|
306 |
+
question_selector = gr.Dropdown(
|
307 |
+
choices=question_selector_choices, label="Question", container=False
|
308 |
+
)
|
309 |
+
|
310 |
+
model_selectors = [None] * num_sides
|
311 |
+
with gr.Row():
|
312 |
+
for i in range(num_sides):
|
313 |
+
with gr.Column():
|
314 |
+
model_selectors[i] = gr.Dropdown(
|
315 |
+
choices=models,
|
316 |
+
value=models[i] if len(models) > i else "",
|
317 |
+
label=f"Model {side_names[i]}",
|
318 |
+
container=False,
|
319 |
+
)
|
320 |
+
|
321 |
+
# Conversation
|
322 |
+
chat_mds = []
|
323 |
+
for i in range(num_turns):
|
324 |
+
chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}"))
|
325 |
+
with gr.Row():
|
326 |
+
for j in range(num_sides):
|
327 |
+
with gr.Column(scale=100):
|
328 |
+
chat_mds.append(gr.Markdown())
|
329 |
+
|
330 |
+
if j == 0:
|
331 |
+
with gr.Column(scale=1, min_width=8):
|
332 |
+
gr.Markdown()
|
333 |
+
|
334 |
+
reference = gr.Markdown(elem_id=f"reference")
|
335 |
+
chat_mds.append(reference)
|
336 |
+
|
337 |
+
model_explanation = gr.Markdown(elem_id="model_explanation")
|
338 |
+
model_explanation2 = gr.Markdown(elem_id="model_explanation")
|
339 |
+
|
340 |
+
# Callbacks
|
341 |
+
category_selector.change(display_question, [category_selector], [question_selector])
|
342 |
+
question_selector.change(
|
343 |
+
display_single_answer,
|
344 |
+
[question_selector] + model_selectors,
|
345 |
+
chat_mds + [model_explanation] + [model_explanation2],
|
346 |
+
)
|
347 |
+
|
348 |
+
for i in range(num_sides):
|
349 |
+
model_selectors[i].change(
|
350 |
+
display_single_answer,
|
351 |
+
[question_selector] + model_selectors,
|
352 |
+
chat_mds + [model_explanation] + [model_explanation2],
|
353 |
+
)
|
354 |
+
|
355 |
+
return (category_selector,)
|
356 |
+
|
357 |
+
|
358 |
+
block_css = """
|
359 |
+
#user_question_1 {
|
360 |
+
background-color: #DEEBF7;
|
361 |
+
}
|
362 |
+
#user_question_2 {
|
363 |
+
background-color: #E2F0D9;
|
364 |
+
}
|
365 |
+
#reference {
|
366 |
+
background-color: #FFF2CC;
|
367 |
+
}
|
368 |
+
#model_explanation {
|
369 |
+
background-color: #FBE5D6;
|
370 |
+
}
|
371 |
+
"""
|
372 |
+
|
373 |
+
|
374 |
+
def load_demo():
|
375 |
+
dropdown_update = gr.Dropdown.update(value=list(category_selector_map.keys())[0])
|
376 |
+
# return dropdown_update, dropdown_update
|
377 |
+
return dropdown_update
|
378 |
+
|
379 |
+
|
380 |
+
def build_demo():
|
381 |
+
build_question_selector_map()
|
382 |
+
|
383 |
+
with gr.Blocks(
|
384 |
+
title="MT-Bench Browser",
|
385 |
+
theme=gr.themes.Base(text_size=gr.themes.sizes.text_lg),
|
386 |
+
css=block_css,
|
387 |
+
) as demo:
|
388 |
+
gr.Markdown(
|
389 |
+
"""
|
390 |
+
# MT-Bench-French Browser
|
391 |
+
This demo provides answers and judgments for specific LLMs on the [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) dataset, enabling a quick assessment of their capabilities in the French language.
|
392 |
+
|
393 |
+
*The code for generating these answers and judgments can be found at [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).*
|
394 |
+
|
395 |
+
*The code for this demo is adapted from [mt-bench](https://huggingface.co/spaces/lmsys/mt-bench).*
|
396 |
+
"""
|
397 |
+
)
|
398 |
+
with gr.Tab("Single Answer Grading"):
|
399 |
+
(category_selector,) = build_single_answer_browser_tab()
|
400 |
+
# with gr.Tab("Pairwise Comparison"):
|
401 |
+
# (category_selector2,) = build_pairwise_browser_tab()
|
402 |
+
# demo.load(load_demo, [], [category_selector, category_selector2])
|
403 |
+
demo.load(load_demo, [], [category_selector])
|
404 |
+
|
405 |
+
return demo
|
406 |
+
|
407 |
+
|
408 |
+
if __name__ == "__main__":
|
409 |
+
parser = argparse.ArgumentParser()
|
410 |
+
parser.add_argument("--host", type=str, default="0.0.0.0")
|
411 |
+
parser.add_argument("--port", type=int)
|
412 |
+
parser.add_argument("--share", action="store_true")
|
413 |
+
parser.add_argument("--bench-name", type=str, default="mt_bench_french")
|
414 |
+
parser.add_argument("--bench-dataset-name", type=str, default="bofenghuang/mt-bench-french")
|
415 |
+
args = parser.parse_args()
|
416 |
+
print(args)
|
417 |
+
|
418 |
+
if not os.path.exists(f"data/{args.bench_name}"):
|
419 |
+
snapshot_download(repo_id=args.bench_dataset_name, local_dir=f"data/{args.bench_name}", repo_type="dataset")
|
420 |
+
print(f"Downloaded benchmark dataset {args.bench_dataset_name} to data/{args.bench_name}")
|
421 |
+
|
422 |
+
question_file = f"data/{args.bench_name}/question.jsonl"
|
423 |
+
answer_dir = f"data/{args.bench_name}/model_answer"
|
424 |
+
# pairwise_model_judgment_file = (
|
425 |
+
# f"data/{args.bench_name}/model_judgment/gpt-4_pair.jsonl"
|
426 |
+
# )
|
427 |
+
single_model_judgment_file = (
|
428 |
+
f"data/{args.bench_name}/model_judgment/gpt-4_single.jsonl"
|
429 |
+
)
|
430 |
+
|
431 |
+
# Load questions
|
432 |
+
questions = load_questions(question_file, None, None)
|
433 |
+
|
434 |
+
# Load answers
|
435 |
+
model_answers = load_model_answers(answer_dir)
|
436 |
+
|
437 |
+
# Load model judgments
|
438 |
+
model_judgments_normal_single = (
|
439 |
+
model_judgments_math_single
|
440 |
+
) = load_single_model_judgments(single_model_judgment_file)
|
441 |
+
# model_judgments_normal_pairwise = (
|
442 |
+
# model_judgments_math_pairwise
|
443 |
+
# ) = load_pairwise_model_judgments(pairwise_model_judgment_file)
|
444 |
+
|
445 |
+
demo = build_demo()
|
446 |
+
demo.queue(concurrency_count=10, status_update_rate=10, api_open=False).launch(
|
447 |
+
server_name=args.host, server_port=args.port, share=args.share, max_threads=200
|
448 |
+
)
|