""" Usage: python3 qa_browser.py --share """ import argparse import os import re from collections import defaultdict import gradio as gr from common import ( get_pairwise_judge_explanation, get_single_judge_explanation, load_model_answers, load_pairwise_model_judgments, load_questions, load_single_model_judgments, resolve_pairwise_judgment_dict, resolve_single_judgment_dict, ) from huggingface_hub import snapshot_download questions = [] model_answers = {} model_judgments_normal_single = {} model_judgments_math_single = {} model_judgments_normal_pairwise = {} model_judgments_math_pairwise = {} question_selector_map = {} category_selector_map = defaultdict(list) def display_question(category_selector, request: gr.Request): choices = category_selector_map[category_selector] return gr.Dropdown.update( value=choices[0], choices=choices, ) def display_pairwise_answer( question_selector, model_selector1, model_selector2, request: gr.Request ): q = question_selector_map[question_selector] qid = q["question_id"] ans1 = model_answers[model_selector1][qid] ans2 = model_answers[model_selector2][qid] chat_mds = pairwise_to_gradio_chat_mds(q, ans1, ans2) gamekey = (qid, model_selector1, model_selector2) judgment_dict = resolve_pairwise_judgment_dict( q, model_judgments_normal_pairwise, model_judgments_math_pairwise, multi_turn=False, ) explanation = ( "##### Model Judgment (first turn)\n" + get_pairwise_judge_explanation(gamekey, judgment_dict) ) judgment_dict_turn2 = resolve_pairwise_judgment_dict( q, model_judgments_normal_pairwise, model_judgments_math_pairwise, multi_turn=True, ) explanation_turn2 = ( "##### Model Judgment (second turn)\n" + get_pairwise_judge_explanation(gamekey, judgment_dict_turn2) ) return chat_mds + [explanation] + [explanation_turn2] def display_single_answer(question_selector, model_selector1, request: gr.Request): q = question_selector_map[question_selector] qid = q["question_id"] ans1 = model_answers[model_selector1][qid] chat_mds = single_to_gradio_chat_mds(q, ans1) gamekey = (qid, model_selector1) judgment_dict = resolve_single_judgment_dict( q, model_judgments_normal_single, model_judgments_math_single, multi_turn=False ) explanation = "##### Model Judgment (first turn)\n" + get_single_judge_explanation( gamekey, judgment_dict ) judgment_dict_turn2 = resolve_single_judgment_dict( q, model_judgments_normal_single, model_judgments_math_single, multi_turn=True ) explanation_turn2 = ( "##### Model Judgment (second turn)\n" + get_single_judge_explanation(gamekey, judgment_dict_turn2) ) return chat_mds + [explanation] + [explanation_turn2] newline_pattern1 = re.compile("\n\n(\d+\. )") newline_pattern2 = re.compile("\n\n(- )") def post_process_answer(x): """Fix Markdown rendering problems.""" x = x.replace("\u2022", "- ") x = re.sub(newline_pattern1, "\n\g<1>", x) x = re.sub(newline_pattern2, "\n\g<1>", x) return x def pairwise_to_gradio_chat_mds(question, ans_a, ans_b, turn=None): end = len(question["turns"]) if turn is None else turn + 1 mds = ["", "", "", "", "", "", ""] for i in range(end): base = i * 3 if i == 0: mds[base + 0] = "##### User\n" + question["turns"][i] else: mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i] mds[base + 1] = "##### Assistant A\n" + post_process_answer( ans_a["choices"][0]["turns"][i].strip() ) mds[base + 2] = "##### Assistant B\n" + post_process_answer( ans_b["choices"][0]["turns"][i].strip() ) ref = question.get("reference", ["", ""]) ref_md = "" if turn is None: if ref[0] != "" or ref[1] != "": mds[6] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}" else: x = ref[turn] if turn < len(ref) else "" if x: mds[6] = f"##### Reference Solution\n{ref[turn]}" else: mds[6] = "" return mds def single_to_gradio_chat_mds(question, ans, turn=None): end = len(question["turns"]) if turn is None else turn + 1 mds = ["", "", "", "", ""] for i in range(end): base = i * 2 if i == 0: mds[base + 0] = "##### User\n" + question["turns"][i] else: mds[base + 0] = "##### User's follow-up question \n" + question["turns"][i] mds[base + 1] = "##### Assistant A\n" + post_process_answer( ans["choices"][0]["turns"][i].strip() ) # ref = question.get("reference", ["", ""]) # tmp fix ref = question.get("reference", ["", ""]) or ["", ""] ref_md = "" if turn is None: if ref[0] != "" or ref[1] != "": # mds[4] = f"##### Reference Solution\nQ1. {ref[0]}\nQ2. {ref[1]}" mds[4] = f"##### Reference Solution\n***Q1***. {ref[0]}\n\n\n***Q2***. {ref[1]}" else: x = ref[turn] if turn < len(ref) else "" if x: mds[4] = f"##### Reference Solution\n{ref[turn]}" else: mds[4] = "" return mds def build_question_selector_map(): global question_selector_map, category_selector_map # Build question selector map for q in questions: preview = f"{q['question_id']}: " + q["turns"][0][:128] + "..." question_selector_map[preview] = q category_selector_map[q["category"]].append(preview) def sort_models(models): priority = { "vigostral-7b-chat": "aaaa", "gpt-4-0314": "aaab", "gpt-3.5-turbo-0613": "aaac", "mixtral-8x7b-instruct-v0.1": "aaad", "mistral-medium": "aaae", } models = list(models) models.sort(key=lambda x: priority.get(x, x)) return models def build_pairwise_browser_tab(): global question_selector_map, category_selector_map # models = list(model_answers.keys()) models = sort_models(list(model_answers.keys())) num_sides = 2 num_turns = 2 side_names = ["A", "B"] question_selector_choices = list(question_selector_map.keys()) category_selector_choices = list(category_selector_map.keys()) # Selectors with gr.Row(): with gr.Column(scale=1, min_width=200): category_selector = gr.Dropdown( choices=category_selector_choices, label="Category", container=False ) with gr.Column(scale=100): question_selector = gr.Dropdown( choices=question_selector_choices, label="Question", container=False ) model_selectors = [None] * num_sides with gr.Row(): for i in range(num_sides): with gr.Column(): if i == 0: value = models[0] else: value = "gpt-3.5-turbo" model_selectors[i] = gr.Dropdown( choices=models, value=value, label=f"Model {side_names[i]}", container=False, ) # Conversation chat_mds = [] for i in range(num_turns): chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}")) with gr.Row(): for j in range(num_sides): with gr.Column(scale=100): chat_mds.append(gr.Markdown()) if j == 0: with gr.Column(scale=1, min_width=8): gr.Markdown() reference = gr.Markdown(elem_id=f"reference") chat_mds.append(reference) model_explanation = gr.Markdown(elem_id="model_explanation") model_explanation2 = gr.Markdown(elem_id="model_explanation") # Callbacks category_selector.change(display_question, [category_selector], [question_selector]) question_selector.change( display_pairwise_answer, [question_selector] + model_selectors, chat_mds + [model_explanation] + [model_explanation2], ) for i in range(num_sides): model_selectors[i].change( display_pairwise_answer, [question_selector] + model_selectors, chat_mds + [model_explanation] + [model_explanation2], ) return (category_selector,) def build_single_answer_browser_tab(): global question_selector_map, category_selector_map # models = list(model_answers.keys()) models = sort_models(list(model_answers.keys())) num_sides = 1 num_turns = 2 side_names = ["A"] question_selector_choices = list(question_selector_map.keys()) category_selector_choices = list(category_selector_map.keys()) # Selectors with gr.Row(): with gr.Column(scale=1, min_width=200): category_selector = gr.Dropdown( choices=category_selector_choices, label="Category", container=False ) with gr.Column(scale=100): question_selector = gr.Dropdown( choices=question_selector_choices, label="Question", container=False ) model_selectors = [None] * num_sides with gr.Row(): for i in range(num_sides): with gr.Column(): model_selectors[i] = gr.Dropdown( choices=models, value=models[i] if len(models) > i else "", label=f"Model {side_names[i]}", container=False, ) # Conversation chat_mds = [] for i in range(num_turns): chat_mds.append(gr.Markdown(elem_id=f"user_question_{i+1}")) with gr.Row(): for j in range(num_sides): with gr.Column(scale=100): chat_mds.append(gr.Markdown()) if j == 0: with gr.Column(scale=1, min_width=8): gr.Markdown() reference = gr.Markdown(elem_id=f"reference") chat_mds.append(reference) model_explanation = gr.Markdown(elem_id="model_explanation") model_explanation2 = gr.Markdown(elem_id="model_explanation") # Callbacks category_selector.change(display_question, [category_selector], [question_selector]) question_selector.change( display_single_answer, [question_selector] + model_selectors, chat_mds + [model_explanation] + [model_explanation2], ) for i in range(num_sides): model_selectors[i].change( display_single_answer, [question_selector] + model_selectors, chat_mds + [model_explanation] + [model_explanation2], ) return (category_selector,) block_css = """ #user_question_1 { background-color: #DEEBF7; } #user_question_2 { background-color: #E2F0D9; } #reference { background-color: #FFF2CC; } #model_explanation { background-color: #FBE5D6; } """ def load_demo(): dropdown_update = gr.Dropdown.update(value=list(category_selector_map.keys())[0]) # return dropdown_update, dropdown_update return dropdown_update def build_demo(): build_question_selector_map() with gr.Blocks( title="MT-Bench Browser", theme=gr.themes.Base(text_size=gr.themes.sizes.text_lg), css=block_css, ) as demo: gr.Markdown( """ # MT-Bench-French Browser This demo provides answers and judgments for specific LLMs on the [MT-Bench-French](https://huggingface.co/datasets/bofenghuang/mt-bench-french) dataset, enabling a quick assessment of their capabilities in the French language. *The code for generating these answers and judgments can be found at [fastchat.llm_judge](https://github.com/lm-sys/FastChat/tree/main/fastchat/llm_judge).* *The code for this demo is adapted from [mt-bench](https://huggingface.co/spaces/lmsys/mt-bench).* """ ) with gr.Tab("Single Answer Grading"): (category_selector,) = build_single_answer_browser_tab() # with gr.Tab("Pairwise Comparison"): # (category_selector2,) = build_pairwise_browser_tab() # demo.load(load_demo, [], [category_selector, category_selector2]) demo.load(load_demo, [], [category_selector]) return demo if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--host", type=str, default="0.0.0.0") parser.add_argument("--port", type=int) parser.add_argument("--share", action="store_true") parser.add_argument("--bench-name", type=str, default="mt_bench_french") parser.add_argument("--bench-dataset-name", type=str, default="bofenghuang/mt-bench-french") args = parser.parse_args() print(args) if not os.path.exists(f"data/{args.bench_name}"): snapshot_download(repo_id=args.bench_dataset_name, local_dir=f"data/{args.bench_name}", repo_type="dataset") print(f"Downloaded benchmark dataset {args.bench_dataset_name} to data/{args.bench_name}") question_file = f"data/{args.bench_name}/question.jsonl" answer_dir = f"data/{args.bench_name}/model_answer" # pairwise_model_judgment_file = ( # f"data/{args.bench_name}/model_judgment/gpt-4_pair.jsonl" # ) single_model_judgment_file = ( f"data/{args.bench_name}/model_judgment/gpt-4_single.jsonl" ) # Load questions questions = load_questions(question_file, None, None) # Load answers model_answers = load_model_answers(answer_dir) # Load model judgments model_judgments_normal_single = ( model_judgments_math_single ) = load_single_model_judgments(single_model_judgment_file) # model_judgments_normal_pairwise = ( # model_judgments_math_pairwise # ) = load_pairwise_model_judgments(pairwise_model_judgment_file) demo = build_demo() demo.queue(concurrency_count=10, status_update_rate=10, api_open=False).launch( server_name=args.host, server_port=args.port, share=args.share, max_threads=200 )