bofenghuang commited on
Commit
009ac63
·
1 Parent(s): b0ce034
Files changed (4) hide show
  1. README.md +2 -2
  2. app.py +0 -98
  3. app.py +1 -0
  4. run_demo.py +98 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Whisper Demo
3
- emoji: 🤫
4
  colorFrom: indigo
5
  colorTo: red
6
  sdk: gradio
 
1
  ---
2
+ title: Whisper French Demo
3
+ emoji: 🇫🇷
4
  colorFrom: indigo
5
  colorTo: red
6
  sdk: gradio
app.py DELETED
@@ -1,98 +0,0 @@
1
- import torch
2
-
3
- import gradio as gr
4
- import pytube as pt
5
- from transformers import pipeline
6
- from huggingface_hub import model_info
7
-
8
- # MODEL_NAME = "openai/whisper-small"
9
- MODEL_NAME = "bhuang/whisper-medium-cv11-french-case-punctuation"
10
- lang = "fr"
11
-
12
- device = 0 if torch.cuda.is_available() else "cpu"
13
- pipe = pipeline(
14
- task="automatic-speech-recognition",
15
- model=MODEL_NAME,
16
- chunk_length_s=30,
17
- device=device,
18
- )
19
-
20
- pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task="transcribe")
21
-
22
- def transcribe(microphone, file_upload):
23
- warn_output = ""
24
- if (microphone is not None) and (file_upload is not None):
25
- warn_output = (
26
- "WARNING: You've uploaded an audio file and used the microphone. "
27
- "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
28
- )
29
-
30
- elif (microphone is None) and (file_upload is None):
31
- return "ERROR: You have to either use the microphone or upload an audio file"
32
-
33
- file = microphone if microphone is not None else file_upload
34
-
35
- text = pipe(file)["text"]
36
-
37
- return warn_output + text
38
-
39
-
40
- def _return_yt_html_embed(yt_url):
41
- video_id = yt_url.split("?v=")[-1]
42
- HTML_str = (
43
- f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
44
- " </center>"
45
- )
46
- return HTML_str
47
-
48
-
49
- def yt_transcribe(yt_url):
50
- yt = pt.YouTube(yt_url)
51
- html_embed_str = _return_yt_html_embed(yt_url)
52
- stream = yt.streams.filter(only_audio=True)[0]
53
- stream.download(filename="audio.mp3")
54
-
55
- text = pipe("audio.mp3")["text"]
56
-
57
- return html_embed_str, text
58
-
59
-
60
- demo = gr.Blocks()
61
-
62
- mf_transcribe = gr.Interface(
63
- fn=transcribe,
64
- inputs=[
65
- gr.inputs.Audio(source="microphone", type="filepath", optional=True),
66
- gr.inputs.Audio(source="upload", type="filepath", optional=True),
67
- ],
68
- outputs="text",
69
- layout="horizontal",
70
- theme="huggingface",
71
- title="Whisper Demo: Transcribe Audio",
72
- description=(
73
- "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
74
- f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
75
- " of arbitrary length."
76
- ),
77
- allow_flagging="never",
78
- )
79
-
80
- yt_transcribe = gr.Interface(
81
- fn=yt_transcribe,
82
- inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
83
- outputs=["html", "text"],
84
- layout="horizontal",
85
- theme="huggingface",
86
- title="Whisper Demo: Transcribe YouTube",
87
- description=(
88
- "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
89
- f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
90
- " arbitrary length."
91
- ),
92
- allow_flagging="never",
93
- )
94
-
95
- with demo:
96
- gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
97
-
98
- demo.launch(enable_queue=True)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
app.py ADDED
@@ -0,0 +1 @@
 
 
1
+ run_demo.py
run_demo.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+
3
+ import gradio as gr
4
+ import pytube as pt
5
+ from transformers import pipeline
6
+ from huggingface_hub import model_info
7
+
8
+ # MODEL_NAME = "openai/whisper-small"
9
+ MODEL_NAME = "bhuang/whisper-medium-cv11-french-case-punctuation"
10
+ CHUNK_LENGTH_S = 30
11
+
12
+ device = 0 if torch.cuda.is_available() else "cpu"
13
+ pipe = pipeline(
14
+ task="automatic-speech-recognition",
15
+ model=MODEL_NAME,
16
+ chunk_length_s=CHUNK_LENGTH_S,
17
+ device=device,
18
+ )
19
+
20
+ pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language="fr", task="transcribe")
21
+
22
+ def transcribe(microphone, file_upload):
23
+ warn_output = ""
24
+ if (microphone is not None) and (file_upload is not None):
25
+ warn_output = (
26
+ "WARNING: You've uploaded an audio file and used the microphone. "
27
+ "The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
28
+ )
29
+
30
+ elif (microphone is None) and (file_upload is None):
31
+ return "ERROR: You have to either use the microphone or upload an audio file"
32
+
33
+ file = microphone if microphone is not None else file_upload
34
+
35
+ text = pipe(file)["text"]
36
+
37
+ return warn_output + text
38
+
39
+
40
+ def _return_yt_html_embed(yt_url):
41
+ video_id = yt_url.split("?v=")[-1]
42
+ HTML_str = (
43
+ f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
44
+ " </center>"
45
+ )
46
+ return HTML_str
47
+
48
+
49
+ def yt_transcribe(yt_url):
50
+ yt = pt.YouTube(yt_url)
51
+ html_embed_str = _return_yt_html_embed(yt_url)
52
+ stream = yt.streams.filter(only_audio=True)[0]
53
+ stream.download(filename="audio.mp3")
54
+
55
+ text = pipe("audio.mp3")["text"]
56
+
57
+ return html_embed_str, text
58
+
59
+
60
+ demo = gr.Blocks()
61
+
62
+ mf_transcribe = gr.Interface(
63
+ fn=transcribe,
64
+ inputs=[
65
+ gr.inputs.Audio(source="microphone", type="filepath", optional=True),
66
+ gr.inputs.Audio(source="upload", type="filepath", optional=True),
67
+ ],
68
+ outputs="text",
69
+ layout="horizontal",
70
+ theme="huggingface",
71
+ title="Whisper Demo: Transcribe Audio",
72
+ description=(
73
+ "Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
74
+ f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
75
+ " of arbitrary length."
76
+ ),
77
+ allow_flagging="never",
78
+ )
79
+
80
+ yt_transcribe = gr.Interface(
81
+ fn=yt_transcribe,
82
+ inputs=[gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")],
83
+ outputs=["html", "text"],
84
+ layout="horizontal",
85
+ theme="huggingface",
86
+ title="Whisper Demo: Transcribe YouTube",
87
+ description=(
88
+ "Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
89
+ f" [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
90
+ " arbitrary length."
91
+ ),
92
+ allow_flagging="never",
93
+ )
94
+
95
+ with demo:
96
+ gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
97
+
98
+ demo.launch(enable_queue=True)