Spaces:
Sleeping
Sleeping
bofenghuang
commited on
Commit
·
839f7b3
1
Parent(s):
2263e75
Add new layout
Browse files- requirements.txt +4 -2
- run_demo_low_api_openai.py +304 -0
- run_demo_openai.py +46 -63
- run_demo_openai_merged.py +0 -174
requirements.txt
CHANGED
@@ -1,5 +1,7 @@
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
git+https://github.com/openai/whisper.git
|
3 |
-
|
|
|
|
|
4 |
pytube
|
5 |
-
|
|
|
1 |
git+https://github.com/huggingface/transformers
|
2 |
git+https://github.com/openai/whisper.git
|
3 |
+
nltk
|
4 |
+
pandas
|
5 |
+
psutil
|
6 |
pytube
|
7 |
+
torch
|
run_demo_low_api_openai.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#! /usr/bin/env python
|
2 |
+
# coding=utf-8
|
3 |
+
# Copyright 2022 Bofeng Huang
|
4 |
+
|
5 |
+
import datetime
|
6 |
+
import logging
|
7 |
+
import os
|
8 |
+
import re
|
9 |
+
import warnings
|
10 |
+
|
11 |
+
import gradio as gr
|
12 |
+
import pandas as pd
|
13 |
+
import psutil
|
14 |
+
import pytube as pt
|
15 |
+
import torch
|
16 |
+
import whisper
|
17 |
+
from huggingface_hub import hf_hub_download, model_info
|
18 |
+
from nltk.tokenize import sent_tokenize
|
19 |
+
from transformers.utils.logging import disable_progress_bar
|
20 |
+
|
21 |
+
warnings.filterwarnings("ignore")
|
22 |
+
disable_progress_bar()
|
23 |
+
|
24 |
+
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
25 |
+
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
26 |
+
|
27 |
+
GEN_KWARGS = {
|
28 |
+
"task": "transcribe",
|
29 |
+
"language": "fr",
|
30 |
+
# "without_timestamps": True,
|
31 |
+
# decode options
|
32 |
+
# "beam_size": 5,
|
33 |
+
# "patience": 2,
|
34 |
+
# disable fallback
|
35 |
+
# "compression_ratio_threshold": None,
|
36 |
+
# "logprob_threshold": None,
|
37 |
+
# vad threshold
|
38 |
+
# "no_speech_threshold": None,
|
39 |
+
}
|
40 |
+
|
41 |
+
logging.basicConfig(
|
42 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
43 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
44 |
+
)
|
45 |
+
logger = logging.getLogger(__name__)
|
46 |
+
logger.setLevel(logging.DEBUG)
|
47 |
+
|
48 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
49 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
50 |
+
logger.info(f"Model will be loaded on device `{device}`")
|
51 |
+
|
52 |
+
cached_models = {}
|
53 |
+
|
54 |
+
|
55 |
+
def format_timestamp(seconds):
|
56 |
+
return str(datetime.timedelta(seconds=round(seconds)))
|
57 |
+
|
58 |
+
|
59 |
+
def _return_yt_html_embed(yt_url):
|
60 |
+
video_id = yt_url.split("?v=")[-1]
|
61 |
+
HTML_str = (
|
62 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' " </center>"
|
63 |
+
)
|
64 |
+
return HTML_str
|
65 |
+
|
66 |
+
|
67 |
+
def download_audio_from_youtube(yt_url, downloaded_filename="audio.wav"):
|
68 |
+
yt = pt.YouTube(yt_url)
|
69 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
70 |
+
# stream.download(filename="audio.mp3")
|
71 |
+
stream.download(filename=downloaded_filename)
|
72 |
+
return downloaded_filename
|
73 |
+
|
74 |
+
|
75 |
+
def download_video_from_youtube(yt_url, downloaded_filename="video.mp4"):
|
76 |
+
yt = pt.YouTube(yt_url)
|
77 |
+
stream = yt.streams.filter(progressive=True, file_extension="mp4").order_by("resolution").desc().first()
|
78 |
+
stream.download(filename=downloaded_filename)
|
79 |
+
logger.info(f"Download YouTube video from {yt_url}")
|
80 |
+
return downloaded_filename
|
81 |
+
|
82 |
+
|
83 |
+
def _print_memory_info():
|
84 |
+
memory = psutil.virtual_memory()
|
85 |
+
logger.info(
|
86 |
+
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def _print_cuda_memory_info():
|
91 |
+
used_mem, tot_mem = torch.cuda.mem_get_info()
|
92 |
+
logger.info(
|
93 |
+
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
|
94 |
+
)
|
95 |
+
|
96 |
+
|
97 |
+
def print_memory_info():
|
98 |
+
_print_memory_info()
|
99 |
+
_print_cuda_memory_info()
|
100 |
+
|
101 |
+
|
102 |
+
def maybe_load_cached_pipeline(model_name):
|
103 |
+
model = cached_models.get(model_name)
|
104 |
+
if model is None:
|
105 |
+
downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
|
106 |
+
|
107 |
+
model = whisper.load_model(downloaded_model_path, device=device)
|
108 |
+
logger.info(f"`{model_name}` has been loaded on device `{device}`")
|
109 |
+
|
110 |
+
print_memory_info()
|
111 |
+
|
112 |
+
cached_models[model_name] = model
|
113 |
+
return model
|
114 |
+
|
115 |
+
|
116 |
+
def infer(model, filename, with_timestamps, return_df=False):
|
117 |
+
if with_timestamps:
|
118 |
+
model_outputs = model.transcribe(filename, **GEN_KWARGS)
|
119 |
+
if return_df:
|
120 |
+
model_outputs_df = pd.DataFrame(model_outputs["segments"])
|
121 |
+
# print(model_outputs)
|
122 |
+
# print(model_outputs_df)
|
123 |
+
# print(model_outputs_df.info(verbose=True))
|
124 |
+
model_outputs_df = model_outputs_df[["start", "end", "text"]]
|
125 |
+
model_outputs_df["start"] = model_outputs_df["start"].map(format_timestamp)
|
126 |
+
model_outputs_df["end"] = model_outputs_df["end"].map(format_timestamp)
|
127 |
+
model_outputs_df["text"] = model_outputs_df["text"].str.strip()
|
128 |
+
return model_outputs_df
|
129 |
+
else:
|
130 |
+
return "\n\n".join(
|
131 |
+
[
|
132 |
+
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
|
133 |
+
for segment in model_outputs["segments"]
|
134 |
+
]
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
text = model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
138 |
+
if return_df:
|
139 |
+
return pd.DataFrame({"text": sent_tokenize(text)})
|
140 |
+
else:
|
141 |
+
return text
|
142 |
+
|
143 |
+
|
144 |
+
def transcribe(microphone, file_upload, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
145 |
+
warn_output = ""
|
146 |
+
if (microphone is not None) and (file_upload is not None):
|
147 |
+
warn_output = (
|
148 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
149 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
150 |
+
)
|
151 |
+
|
152 |
+
elif (microphone is None) and (file_upload is None):
|
153 |
+
return "ERROR: You have to either use the microphone or upload an audio file"
|
154 |
+
|
155 |
+
file = microphone if microphone is not None else file_upload
|
156 |
+
|
157 |
+
model = maybe_load_cached_pipeline(model_name)
|
158 |
+
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
159 |
+
# text = infer(model, file, with_timestamps)
|
160 |
+
text = infer(model, file, with_timestamps, return_df=True)
|
161 |
+
|
162 |
+
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
163 |
+
|
164 |
+
# return warn_output + text
|
165 |
+
return text
|
166 |
+
|
167 |
+
|
168 |
+
def yt_transcribe(yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
169 |
+
# html_embed_str = _return_yt_html_embed(yt_url)
|
170 |
+
audio_file_path = download_audio_from_youtube(yt_url)
|
171 |
+
|
172 |
+
model = maybe_load_cached_pipeline(model_name)
|
173 |
+
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
|
174 |
+
# text = infer(model, audio_file_path, with_timestamps)
|
175 |
+
text = infer(model, audio_file_path, with_timestamps, return_df=True)
|
176 |
+
|
177 |
+
logger.info(f'Transcription by `{model_name}` of "{yt_url}":\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
178 |
+
|
179 |
+
# return html_embed_str, text
|
180 |
+
return text
|
181 |
+
|
182 |
+
|
183 |
+
def video_transcribe(video_file_path, model_name=DEFAULT_MODEL_NAME):
|
184 |
+
if video_file_path is None:
|
185 |
+
raise ValueError("Failed to transcribe video as no video_file_path has been defined")
|
186 |
+
|
187 |
+
audio_file_path = re.sub(r"\.mp4$", ".wav", video_file_path)
|
188 |
+
os.system(f'ffmpeg -i "{video_file_path}" -ar 16000 -ac 1 -c:a pcm_s16le "{audio_file_path}"')
|
189 |
+
|
190 |
+
model = maybe_load_cached_pipeline(model_name)
|
191 |
+
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
|
192 |
+
text = infer(model, audio_file_path, with_timestamps=True, return_df=True)
|
193 |
+
|
194 |
+
logger.info(f'Transcription by `{model_name}`:\n{text.to_json(orient="index", force_ascii=False, indent=2)}\n')
|
195 |
+
|
196 |
+
return text
|
197 |
+
|
198 |
+
|
199 |
+
# load default model
|
200 |
+
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
201 |
+
|
202 |
+
# default_text_output_df = pd.DataFrame(columns=["start", "end", "text"])
|
203 |
+
default_text_output_df = pd.DataFrame(columns=["text"])
|
204 |
+
|
205 |
+
with gr.Blocks() as demo:
|
206 |
+
|
207 |
+
with gr.Tab("Transcribe Audio"):
|
208 |
+
gr.Markdown(
|
209 |
+
f"""
|
210 |
+
<div>
|
211 |
+
<h1 style='text-align: center'>Whisper French Demo 🇫🇷 : Transcribe Audio</h1>
|
212 |
+
</div>
|
213 |
+
Transcribe long-form microphone or audio inputs!
|
214 |
+
|
215 |
+
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe audio files of arbitrary length.
|
216 |
+
"""
|
217 |
+
)
|
218 |
+
|
219 |
+
microphone_input = gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True)
|
220 |
+
upload_input = gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True)
|
221 |
+
with_timestamps_input = gr.Checkbox(label="With timestamps?")
|
222 |
+
|
223 |
+
microphone_transcribe_btn = gr.Button("Transcribe Audio")
|
224 |
+
|
225 |
+
# gr.Markdown('''
|
226 |
+
# Here you will get generated transcrit.
|
227 |
+
# ''')
|
228 |
+
|
229 |
+
# microphone_text_output = gr.outputs.Textbox(label="Transcription")
|
230 |
+
text_output_df2 = gr.DataFrame(
|
231 |
+
value=default_text_output_df,
|
232 |
+
label="Transcription",
|
233 |
+
row_count=(0, "dynamic"),
|
234 |
+
max_rows=10,
|
235 |
+
wrap=True,
|
236 |
+
overflow_row_behaviour="paginate",
|
237 |
+
)
|
238 |
+
|
239 |
+
microphone_transcribe_btn.click(
|
240 |
+
transcribe, inputs=[microphone_input, upload_input, with_timestamps_input], outputs=text_output_df2
|
241 |
+
)
|
242 |
+
|
243 |
+
# with gr.Tab("Transcribe YouTube"):
|
244 |
+
# gr.Markdown(
|
245 |
+
# f"""
|
246 |
+
# <div>
|
247 |
+
# <h1 style='text-align: center'>Whisper French Demo 🇫🇷 : Transcribe YouTube</h1>
|
248 |
+
# </div>
|
249 |
+
# Transcribe long-form YouTube videos!
|
250 |
+
|
251 |
+
# Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
|
252 |
+
# """
|
253 |
+
# )
|
254 |
+
|
255 |
+
# yt_link_input2 = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
256 |
+
# with_timestamps_input2 = gr.Checkbox(label="With timestamps?", value=True)
|
257 |
+
|
258 |
+
# yt_transcribe_btn = gr.Button("Transcribe YouTube")
|
259 |
+
|
260 |
+
# # yt_text_output = gr.outputs.Textbox(label="Transcription")
|
261 |
+
# text_output_df3 = gr.DataFrame(
|
262 |
+
# value=default_text_output_df,
|
263 |
+
# label="Transcription",
|
264 |
+
# row_count=(0, "dynamic"),
|
265 |
+
# max_rows=10,
|
266 |
+
# wrap=True,
|
267 |
+
# overflow_row_behaviour="paginate",
|
268 |
+
# )
|
269 |
+
# # yt_html_output = gr.outputs.HTML(label="YouTube Page")
|
270 |
+
|
271 |
+
# yt_transcribe_btn.click(yt_transcribe, inputs=[yt_link_input2, with_timestamps_input2], outputs=[text_output_df3])
|
272 |
+
|
273 |
+
with gr.Tab("Transcribe Video"):
|
274 |
+
gr.Markdown(
|
275 |
+
f"""
|
276 |
+
<div>
|
277 |
+
<h1 style='text-align: center'>Whisper French Demo 🇫🇷 : Transcribe Video</h1>
|
278 |
+
</div>
|
279 |
+
Transcribe long-form YouTube videos or uploaded video inputs!
|
280 |
+
|
281 |
+
Demo uses the fine-tuned checkpoint: <a href='https://huggingface.co/{DEFAULT_MODEL_NAME}' target='_blank'><b>{DEFAULT_MODEL_NAME}</b></a> to transcribe video files of arbitrary length.
|
282 |
+
"""
|
283 |
+
)
|
284 |
+
|
285 |
+
yt_link_input = gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
286 |
+
download_youtube_btn = gr.Button("Download Youtube video")
|
287 |
+
downloaded_video_output = gr.Video(label="Video file", mirror_webcam=False)
|
288 |
+
download_youtube_btn.click(download_video_from_youtube, inputs=[yt_link_input], outputs=[downloaded_video_output])
|
289 |
+
|
290 |
+
video_transcribe_btn = gr.Button("Transcribe video")
|
291 |
+
text_output_df = gr.DataFrame(
|
292 |
+
value=default_text_output_df,
|
293 |
+
label="Transcription",
|
294 |
+
row_count=(0, "dynamic"),
|
295 |
+
max_rows=10,
|
296 |
+
wrap=True,
|
297 |
+
overflow_row_behaviour="paginate",
|
298 |
+
)
|
299 |
+
|
300 |
+
video_transcribe_btn.click(video_transcribe, inputs=[downloaded_video_output], outputs=[text_output_df])
|
301 |
+
|
302 |
+
# demo.launch(server_name="0.0.0.0", debug=True)
|
303 |
+
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
304 |
+
demo.launch(enable_queue=True)
|
run_demo_openai.py
CHANGED
@@ -46,7 +46,7 @@ cached_models = {}
|
|
46 |
def _print_memory_info():
|
47 |
memory = psutil.virtual_memory()
|
48 |
logger.info(
|
49 |
-
f"Memory: {memory.
|
50 |
)
|
51 |
|
52 |
|
@@ -89,102 +89,85 @@ def infer(model, filename, with_timestamps):
|
|
89 |
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
90 |
|
91 |
|
92 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
warn_output = ""
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
if (microphone is not None) and (file_upload is not None):
|
95 |
warn_output = (
|
96 |
"WARNING: You've uploaded an audio file and used the microphone. "
|
97 |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
98 |
)
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
model = maybe_load_cached_pipeline(model_name)
|
106 |
-
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
107 |
-
text = infer(model, file, with_timestamps)
|
108 |
-
|
109 |
-
logger.info(f"Transcription by `{model_name}`:\n{text}\n")
|
110 |
-
except Exception as e:
|
111 |
-
logger.info(str(e))
|
112 |
-
|
113 |
-
return warn_output + text
|
114 |
-
|
115 |
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
return HTML_str
|
122 |
|
|
|
|
|
123 |
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
|
|
|
|
|
|
|
|
129 |
|
130 |
model = maybe_load_cached_pipeline(model_name)
|
131 |
-
# text = model.transcribe(
|
132 |
-
text = infer(model,
|
133 |
|
134 |
-
logger.info(
|
135 |
|
136 |
-
return
|
137 |
|
138 |
|
139 |
# load default model
|
140 |
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
141 |
|
142 |
-
demo = gr.
|
143 |
-
|
144 |
-
mf_transcribe = gr.Interface(
|
145 |
fn=transcribe,
|
146 |
inputs=[
|
147 |
gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True),
|
148 |
gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True),
|
149 |
-
gr.
|
|
|
150 |
],
|
151 |
-
# outputs="text",
|
152 |
outputs=gr.outputs.Textbox(label="Transcription"),
|
153 |
layout="horizontal",
|
154 |
theme="huggingface",
|
155 |
-
title="Whisper French Demo 🇫🇷
|
156 |
description=(
|
157 |
-
"Transcribe long-form microphone
|
158 |
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
159 |
" of arbitrary length."
|
160 |
),
|
161 |
allow_flagging="never",
|
162 |
)
|
163 |
|
164 |
-
yt_transcribe = gr.Interface(
|
165 |
-
fn=yt_transcribe,
|
166 |
-
inputs=[
|
167 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
168 |
-
gr.Checkbox(label="With timestamps?", value=True),
|
169 |
-
],
|
170 |
-
# outputs=["html", "text"],
|
171 |
-
outputs=[
|
172 |
-
gr.outputs.HTML(label="YouTube Page"),
|
173 |
-
gr.outputs.Textbox(label="Transcription"),
|
174 |
-
],
|
175 |
-
layout="horizontal",
|
176 |
-
theme="huggingface",
|
177 |
-
title="Whisper French Demo 🇫🇷 : Transcribe YouTube",
|
178 |
-
description=(
|
179 |
-
"Transcribe long-form YouTube videos with the click of a button!\n\nDemo uses the the fine-tuned checkpoint:"
|
180 |
-
f" [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
181 |
-
" arbitrary length."
|
182 |
-
),
|
183 |
-
allow_flagging="never",
|
184 |
-
)
|
185 |
-
|
186 |
-
with demo:
|
187 |
-
gr.TabbedInterface([mf_transcribe, yt_transcribe], ["Transcribe Audio", "Transcribe YouTube"])
|
188 |
|
189 |
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
190 |
demo.launch(enable_queue=True)
|
|
|
46 |
def _print_memory_info():
|
47 |
memory = psutil.virtual_memory()
|
48 |
logger.info(
|
49 |
+
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
|
50 |
)
|
51 |
|
52 |
|
|
|
89 |
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
90 |
|
91 |
|
92 |
+
def download_from_youtube(yt_url, downloaded_filename="audio.wav"):
|
93 |
+
yt = pt.YouTube(yt_url)
|
94 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
95 |
+
# stream.download(filename="audio.mp3")
|
96 |
+
stream.download(filename=downloaded_filename)
|
97 |
+
return downloaded_filename
|
98 |
+
|
99 |
+
|
100 |
+
def transcribe(microphone, file_upload, yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
101 |
warn_output = ""
|
102 |
+
if (microphone is not None) and (file_upload is not None) and yt_url:
|
103 |
+
warn_output = (
|
104 |
+
"WARNING: You've uploaded an audio file, used the microphone, and pasted a YouTube URL. "
|
105 |
+
"The recorded file from the microphone will be used, the uploaded audio and the YouTube URL will be discarded.\n"
|
106 |
+
)
|
107 |
+
|
108 |
if (microphone is not None) and (file_upload is not None):
|
109 |
warn_output = (
|
110 |
"WARNING: You've uploaded an audio file and used the microphone. "
|
111 |
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
112 |
)
|
113 |
|
114 |
+
if (microphone is not None) and yt_url:
|
115 |
+
warn_output = (
|
116 |
+
"WARNING: You've used the microphone and pasted a YouTube URL. "
|
117 |
+
"The recorded file from the microphone will be used and the YouTube URL will be discarded.\n"
|
118 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
+
if (file_upload is not None) and yt_url:
|
121 |
+
warn_output = (
|
122 |
+
"WARNING: You've uploaded an audio file and pasted a YouTube URL. "
|
123 |
+
"The uploaded audio will be used and the YouTube URL will be discarded.\n"
|
124 |
+
)
|
|
|
125 |
|
126 |
+
elif (microphone is None) and (file_upload is None) and (not yt_url):
|
127 |
+
return "ERROR: You have to either use the microphone, upload an audio file or paste a YouTube URL"
|
128 |
|
129 |
+
if microphone is not None:
|
130 |
+
file = microphone
|
131 |
+
logging_prefix = f"Transcription by `{model_name}` of microphone:"
|
132 |
+
elif file_upload is not None:
|
133 |
+
file = file_upload
|
134 |
+
logging_prefix = f"Transcription by `{model_name}` of uploaded file:"
|
135 |
+
else:
|
136 |
+
file = download_from_youtube(yt_url)
|
137 |
+
logging_prefix = f'Transcription by `{model_name}` of "{yt_url}":'
|
138 |
|
139 |
model = maybe_load_cached_pipeline(model_name)
|
140 |
+
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
141 |
+
text = infer(model, file, with_timestamps)
|
142 |
|
143 |
+
logger.info(logging_prefix + "\n" + text + "\n")
|
144 |
|
145 |
+
return warn_output + text
|
146 |
|
147 |
|
148 |
# load default model
|
149 |
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
150 |
|
151 |
+
demo = gr.Interface(
|
|
|
|
|
152 |
fn=transcribe,
|
153 |
inputs=[
|
154 |
gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True),
|
155 |
gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True),
|
156 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
|
157 |
+
gr.Checkbox(label="With timestamps?"),
|
158 |
],
|
|
|
159 |
outputs=gr.outputs.Textbox(label="Transcription"),
|
160 |
layout="horizontal",
|
161 |
theme="huggingface",
|
162 |
+
title="Whisper French Demo 🇫🇷",
|
163 |
description=(
|
164 |
+
"**Transcribe long-form microphone, audio inputs or YouTube videos with the click of a button!** \n\nDemo uses the the fine-tuned"
|
165 |
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
166 |
" of arbitrary length."
|
167 |
),
|
168 |
allow_flagging="never",
|
169 |
)
|
170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
|
172 |
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
173 |
demo.launch(enable_queue=True)
|
run_demo_openai_merged.py
DELETED
@@ -1,174 +0,0 @@
|
|
1 |
-
import logging
|
2 |
-
import warnings
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
import pytube as pt
|
6 |
-
import psutil
|
7 |
-
import torch
|
8 |
-
import whisper
|
9 |
-
from huggingface_hub import hf_hub_download, model_info
|
10 |
-
from transformers.utils.logging import disable_progress_bar
|
11 |
-
|
12 |
-
warnings.filterwarnings("ignore")
|
13 |
-
disable_progress_bar()
|
14 |
-
|
15 |
-
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
16 |
-
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
17 |
-
|
18 |
-
GEN_KWARGS = {
|
19 |
-
"task": "transcribe",
|
20 |
-
"language": "fr",
|
21 |
-
# "without_timestamps": True,
|
22 |
-
# decode options
|
23 |
-
# "beam_size": 5,
|
24 |
-
# "patience": 2,
|
25 |
-
# disable fallback
|
26 |
-
# "compression_ratio_threshold": None,
|
27 |
-
# "logprob_threshold": None,
|
28 |
-
# vad threshold
|
29 |
-
# "no_speech_threshold": None,
|
30 |
-
}
|
31 |
-
|
32 |
-
logging.basicConfig(
|
33 |
-
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
34 |
-
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
35 |
-
)
|
36 |
-
logger = logging.getLogger(__name__)
|
37 |
-
logger.setLevel(logging.DEBUG)
|
38 |
-
|
39 |
-
# device = 0 if torch.cuda.is_available() else "cpu"
|
40 |
-
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
41 |
-
logger.info(f"Model will be loaded on device `{device}`")
|
42 |
-
|
43 |
-
cached_models = {}
|
44 |
-
|
45 |
-
|
46 |
-
def _print_memory_info():
|
47 |
-
memory = psutil.virtual_memory()
|
48 |
-
logger.info(
|
49 |
-
f"Memory info - Free: {memory.available / (1024 ** 3):.2f} Gb, used: {memory.percent}%, total: {memory.total / (1024 ** 3):.2f} Gb"
|
50 |
-
)
|
51 |
-
|
52 |
-
|
53 |
-
def print_cuda_memory_info():
|
54 |
-
used_mem, tot_mem = torch.cuda.mem_get_info()
|
55 |
-
logger.info(
|
56 |
-
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
|
57 |
-
)
|
58 |
-
|
59 |
-
|
60 |
-
def print_memory_info():
|
61 |
-
_print_memory_info()
|
62 |
-
print_cuda_memory_info()
|
63 |
-
|
64 |
-
|
65 |
-
def maybe_load_cached_pipeline(model_name):
|
66 |
-
model = cached_models.get(model_name)
|
67 |
-
if model is None:
|
68 |
-
downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
|
69 |
-
|
70 |
-
model = whisper.load_model(downloaded_model_path, device=device)
|
71 |
-
logger.info(f"`{model_name}` has been loaded on device `{device}`")
|
72 |
-
|
73 |
-
print_memory_info()
|
74 |
-
|
75 |
-
cached_models[model_name] = model
|
76 |
-
return model
|
77 |
-
|
78 |
-
|
79 |
-
def infer(model, filename, with_timestamps):
|
80 |
-
if with_timestamps:
|
81 |
-
model_outputs = model.transcribe(filename, **GEN_KWARGS)
|
82 |
-
return "\n\n".join(
|
83 |
-
[
|
84 |
-
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
|
85 |
-
for segment in model_outputs["segments"]
|
86 |
-
]
|
87 |
-
)
|
88 |
-
else:
|
89 |
-
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
90 |
-
|
91 |
-
|
92 |
-
def download_from_youtube(yt_url, downloaded_filename="audio.wav"):
|
93 |
-
yt = pt.YouTube(yt_url)
|
94 |
-
stream = yt.streams.filter(only_audio=True)[0]
|
95 |
-
# stream.download(filename="audio.mp3")
|
96 |
-
stream.download(filename=downloaded_filename)
|
97 |
-
return downloaded_filename
|
98 |
-
|
99 |
-
|
100 |
-
def transcribe(microphone, file_upload, yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
101 |
-
warn_output = ""
|
102 |
-
if (microphone is not None) and (file_upload is not None) and yt_url:
|
103 |
-
warn_output = (
|
104 |
-
"WARNING: You've uploaded an audio file, used the microphone, and pasted a YouTube URL. "
|
105 |
-
"The recorded file from the microphone will be used, the uploaded audio and the YouTube URL will be discarded.\n"
|
106 |
-
)
|
107 |
-
|
108 |
-
if (microphone is not None) and (file_upload is not None):
|
109 |
-
warn_output = (
|
110 |
-
"WARNING: You've uploaded an audio file and used the microphone. "
|
111 |
-
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
112 |
-
)
|
113 |
-
|
114 |
-
if (microphone is not None) and yt_url:
|
115 |
-
warn_output = (
|
116 |
-
"WARNING: You've used the microphone and pasted a YouTube URL. "
|
117 |
-
"The recorded file from the microphone will be used and the YouTube URL will be discarded.\n"
|
118 |
-
)
|
119 |
-
|
120 |
-
if (file_upload is not None) and yt_url:
|
121 |
-
warn_output = (
|
122 |
-
"WARNING: You've uploaded an audio file and pasted a YouTube URL. "
|
123 |
-
"The uploaded audio will be used and the YouTube URL will be discarded.\n"
|
124 |
-
)
|
125 |
-
|
126 |
-
elif (microphone is None) and (file_upload is None) and (not yt_url):
|
127 |
-
return "ERROR: You have to either use the microphone, upload an audio file or paste a YouTube URL"
|
128 |
-
|
129 |
-
if microphone is not None:
|
130 |
-
file = microphone
|
131 |
-
logging_prefix = f"Transcription by `{model_name}` of microphone:"
|
132 |
-
elif file_upload is not None:
|
133 |
-
file = file_upload
|
134 |
-
logging_prefix = f"Transcription by `{model_name}` of uploaded file:"
|
135 |
-
else:
|
136 |
-
file = download_from_youtube(yt_url)
|
137 |
-
logging_prefix = f'Transcription by `{model_name}` of "{yt_url}":'
|
138 |
-
|
139 |
-
model = maybe_load_cached_pipeline(model_name)
|
140 |
-
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
141 |
-
text = infer(model, file, with_timestamps)
|
142 |
-
|
143 |
-
logger.info(logging_prefix + "\n" + text + "\n")
|
144 |
-
|
145 |
-
return warn_output + text
|
146 |
-
|
147 |
-
|
148 |
-
# load default model
|
149 |
-
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
150 |
-
|
151 |
-
demo = gr.Interface(
|
152 |
-
fn=transcribe,
|
153 |
-
inputs=[
|
154 |
-
gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True),
|
155 |
-
gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True),
|
156 |
-
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
|
157 |
-
gr.Checkbox(label="With timestamps?"),
|
158 |
-
],
|
159 |
-
# outputs="text",
|
160 |
-
outputs=gr.outputs.Textbox(label="Transcription"),
|
161 |
-
layout="horizontal",
|
162 |
-
theme="huggingface",
|
163 |
-
title="Whisper French Demo 🇫🇷 : Transcribe Audio",
|
164 |
-
description=(
|
165 |
-
"**Transcribe long-form microphone, audio inputs or YouTube videos with the click of a button!** \n\nDemo uses the the fine-tuned"
|
166 |
-
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
167 |
-
" of arbitrary length."
|
168 |
-
),
|
169 |
-
allow_flagging="never",
|
170 |
-
)
|
171 |
-
|
172 |
-
|
173 |
-
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
174 |
-
demo.launch(enable_queue=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|