Spaces:
Sleeping
Sleeping
bofenghuang
commited on
Commit
·
8dde699
1
Parent(s):
120532c
add timestamp option
Browse files- run_demo_openai.py +71 -22
- run_demo_openai_merged.py +169 -0
run_demo_openai.py
CHANGED
@@ -4,22 +4,14 @@ import warnings
|
|
4 |
import gradio as gr
|
5 |
import pytube as pt
|
6 |
import torch
|
|
|
7 |
from huggingface_hub import hf_hub_download, model_info
|
8 |
from transformers.utils.logging import disable_progress_bar
|
9 |
-
import whisper
|
10 |
-
|
11 |
|
12 |
warnings.filterwarnings("ignore")
|
13 |
disable_progress_bar()
|
14 |
|
15 |
-
|
16 |
-
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
17 |
-
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
18 |
-
)
|
19 |
-
logger = logging.getLogger(__name__)
|
20 |
-
logger.setLevel(logging.DEBUG)
|
21 |
-
|
22 |
-
MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
23 |
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
24 |
|
25 |
GEN_KWARGS = {
|
@@ -36,17 +28,63 @@ GEN_KWARGS = {
|
|
36 |
# "no_speech_threshold": None,
|
37 |
}
|
38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
# device = 0 if torch.cuda.is_available() else "cpu"
|
40 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
|
|
44 |
|
45 |
-
|
46 |
-
logger.info(f"Model has been loaded on device `{device}`")
|
47 |
|
|
|
|
|
48 |
|
49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
warn_output = ""
|
51 |
if (microphone is not None) and (file_upload is not None):
|
52 |
warn_output = (
|
@@ -59,9 +97,11 @@ def transcribe(microphone, file_upload):
|
|
59 |
|
60 |
file = microphone if microphone is not None else file_upload
|
61 |
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
logger.info(f"Transcription
|
65 |
|
66 |
return warn_output + text
|
67 |
|
@@ -74,19 +114,24 @@ def _return_yt_html_embed(yt_url):
|
|
74 |
return HTML_str
|
75 |
|
76 |
|
77 |
-
def yt_transcribe(yt_url):
|
78 |
yt = pt.YouTube(yt_url)
|
79 |
html_embed_str = _return_yt_html_embed(yt_url)
|
80 |
stream = yt.streams.filter(only_audio=True)[0]
|
81 |
stream.download(filename="audio.mp3")
|
82 |
|
83 |
-
|
|
|
|
|
84 |
|
85 |
-
logger.info(f'Transcription of "{yt_url}": {text}')
|
86 |
|
87 |
return html_embed_str, text
|
88 |
|
89 |
|
|
|
|
|
|
|
90 |
demo = gr.Blocks()
|
91 |
|
92 |
mf_transcribe = gr.Interface(
|
@@ -94,6 +139,7 @@ mf_transcribe = gr.Interface(
|
|
94 |
inputs=[
|
95 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record"),
|
96 |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload File"),
|
|
|
97 |
],
|
98 |
# outputs="text",
|
99 |
outputs=gr.outputs.Textbox(label="Transcription"),
|
@@ -102,7 +148,7 @@ mf_transcribe = gr.Interface(
|
|
102 |
title="Whisper French Demo 🇫🇷 : Transcribe Audio",
|
103 |
description=(
|
104 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
105 |
-
f" checkpoint [{
|
106 |
" of arbitrary length."
|
107 |
),
|
108 |
allow_flagging="never",
|
@@ -110,7 +156,10 @@ mf_transcribe = gr.Interface(
|
|
110 |
|
111 |
yt_transcribe = gr.Interface(
|
112 |
fn=yt_transcribe,
|
113 |
-
inputs=[
|
|
|
|
|
|
|
114 |
# outputs=["html", "text"],
|
115 |
outputs=[
|
116 |
gr.outputs.HTML(label="YouTube Page"),
|
@@ -121,7 +170,7 @@ yt_transcribe = gr.Interface(
|
|
121 |
title="Whisper French Demo 🇫🇷 : Transcribe YouTube",
|
122 |
description=(
|
123 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
124 |
-
f" [{
|
125 |
" arbitrary length."
|
126 |
),
|
127 |
allow_flagging="never",
|
|
|
4 |
import gradio as gr
|
5 |
import pytube as pt
|
6 |
import torch
|
7 |
+
import whisper
|
8 |
from huggingface_hub import hf_hub_download, model_info
|
9 |
from transformers.utils.logging import disable_progress_bar
|
|
|
|
|
10 |
|
11 |
warnings.filterwarnings("ignore")
|
12 |
disable_progress_bar()
|
13 |
|
14 |
+
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
16 |
|
17 |
GEN_KWARGS = {
|
|
|
28 |
# "no_speech_threshold": None,
|
29 |
}
|
30 |
|
31 |
+
logging.basicConfig(
|
32 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
33 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
34 |
+
)
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
logger.setLevel(logging.DEBUG)
|
37 |
+
|
38 |
# device = 0 if torch.cuda.is_available() else "cpu"
|
39 |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
+
logger.info(f"Model will be loaded on device `{device}`")
|
41 |
+
|
42 |
+
cached_models = {}
|
43 |
+
|
44 |
+
|
45 |
+
def print_cuda_memory_info():
|
46 |
+
used_mem, tot_mem = torch.cuda.mem_get_info()
|
47 |
+
logger.info(
|
48 |
+
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def print_memory_info():
|
53 |
+
# todo
|
54 |
+
if device == "cpu":
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
print_cuda_memory_info()
|
58 |
+
|
59 |
|
60 |
+
def maybe_load_cached_pipeline(model_name):
|
61 |
+
model = cached_models.get(model_name)
|
62 |
+
if model is None:
|
63 |
+
downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
|
64 |
|
65 |
+
model = whisper.load_model(downloaded_model_path, device=device)
|
66 |
+
logger.info(f"`{model_name}` has been loaded on device `{device}`")
|
67 |
|
68 |
+
print_memory_info()
|
|
|
69 |
|
70 |
+
cached_models[model_name] = model
|
71 |
+
return model
|
72 |
|
73 |
+
|
74 |
+
def infer(model, filename, with_timestamps):
|
75 |
+
if with_timestamps:
|
76 |
+
model_outputs = model.transcribe(filename, **GEN_KWARGS)
|
77 |
+
return "\n\n".join(
|
78 |
+
[
|
79 |
+
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
|
80 |
+
for segment in model_outputs["segments"]
|
81 |
+
]
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
85 |
+
|
86 |
+
|
87 |
+
def transcribe(microphone, file_upload, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
88 |
warn_output = ""
|
89 |
if (microphone is not None) and (file_upload is not None):
|
90 |
warn_output = (
|
|
|
97 |
|
98 |
file = microphone if microphone is not None else file_upload
|
99 |
|
100 |
+
model = maybe_load_cached_pipeline(model_name)
|
101 |
+
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
102 |
+
text = infer(model, file, with_timestamps)
|
103 |
|
104 |
+
logger.info(f"Transcription by `{model_name}`: {text}")
|
105 |
|
106 |
return warn_output + text
|
107 |
|
|
|
114 |
return HTML_str
|
115 |
|
116 |
|
117 |
+
def yt_transcribe(yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
118 |
yt = pt.YouTube(yt_url)
|
119 |
html_embed_str = _return_yt_html_embed(yt_url)
|
120 |
stream = yt.streams.filter(only_audio=True)[0]
|
121 |
stream.download(filename="audio.mp3")
|
122 |
|
123 |
+
model = maybe_load_cached_pipeline(model_name)
|
124 |
+
# text = model.transcribe("audio.mp3", **GEN_KWARGS)["text"]
|
125 |
+
text = infer(model, "audio.mp3", with_timestamps)
|
126 |
|
127 |
+
logger.info(f'Transcription by `{model_name}` of "{yt_url}": {text}')
|
128 |
|
129 |
return html_embed_str, text
|
130 |
|
131 |
|
132 |
+
# load default model
|
133 |
+
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
134 |
+
|
135 |
demo = gr.Blocks()
|
136 |
|
137 |
mf_transcribe = gr.Interface(
|
|
|
139 |
inputs=[
|
140 |
gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Record"),
|
141 |
gr.inputs.Audio(source="upload", type="filepath", optional=True, label="Upload File"),
|
142 |
+
gr.Checkbox(label="With timestamps?", value=True),
|
143 |
],
|
144 |
# outputs="text",
|
145 |
outputs=gr.outputs.Textbox(label="Transcription"),
|
|
|
148 |
title="Whisper French Demo 🇫🇷 : Transcribe Audio",
|
149 |
description=(
|
150 |
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
151 |
+
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
152 |
" of arbitrary length."
|
153 |
),
|
154 |
allow_flagging="never",
|
|
|
156 |
|
157 |
yt_transcribe = gr.Interface(
|
158 |
fn=yt_transcribe,
|
159 |
+
inputs=[
|
160 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
161 |
+
gr.Checkbox(label="With timestamps?", value=True),
|
162 |
+
],
|
163 |
# outputs=["html", "text"],
|
164 |
outputs=[
|
165 |
gr.outputs.HTML(label="YouTube Page"),
|
|
|
170 |
title="Whisper French Demo 🇫🇷 : Transcribe YouTube",
|
171 |
description=(
|
172 |
"Transcribe long-form YouTube videos with the click of a button! Demo uses the the fine-tuned checkpoint:"
|
173 |
+
f" [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files of"
|
174 |
" arbitrary length."
|
175 |
),
|
176 |
allow_flagging="never",
|
run_demo_openai_merged.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import pytube as pt
|
6 |
+
import torch
|
7 |
+
import whisper
|
8 |
+
from huggingface_hub import hf_hub_download, model_info
|
9 |
+
from transformers.utils.logging import disable_progress_bar
|
10 |
+
|
11 |
+
warnings.filterwarnings("ignore")
|
12 |
+
disable_progress_bar()
|
13 |
+
|
14 |
+
DEFAULT_MODEL_NAME = "bofenghuang/whisper-large-v2-cv11-french"
|
15 |
+
CHECKPOINT_FILENAME = "checkpoint_openai.pt"
|
16 |
+
|
17 |
+
GEN_KWARGS = {
|
18 |
+
"task": "transcribe",
|
19 |
+
"language": "fr",
|
20 |
+
# "without_timestamps": True,
|
21 |
+
# decode options
|
22 |
+
# "beam_size": 5,
|
23 |
+
# "patience": 2,
|
24 |
+
# disable fallback
|
25 |
+
# "compression_ratio_threshold": None,
|
26 |
+
# "logprob_threshold": None,
|
27 |
+
# vad threshold
|
28 |
+
# "no_speech_threshold": None,
|
29 |
+
}
|
30 |
+
|
31 |
+
logging.basicConfig(
|
32 |
+
format="%(asctime)s [%(levelname)s] [%(name)s] %(message)s",
|
33 |
+
datefmt="%Y-%m-%dT%H:%M:%SZ",
|
34 |
+
)
|
35 |
+
logger = logging.getLogger(__name__)
|
36 |
+
logger.setLevel(logging.DEBUG)
|
37 |
+
|
38 |
+
# device = 0 if torch.cuda.is_available() else "cpu"
|
39 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
40 |
+
logger.info(f"Model will be loaded on device `{device}`")
|
41 |
+
|
42 |
+
cached_models = {}
|
43 |
+
|
44 |
+
|
45 |
+
def print_cuda_memory_info():
|
46 |
+
used_mem, tot_mem = torch.cuda.mem_get_info()
|
47 |
+
logger.info(
|
48 |
+
f"CUDA memory info - Free: {used_mem / 1024 ** 3:.2f} Gb, used: {(tot_mem - used_mem) / 1024 ** 3:.2f} Gb, total: {tot_mem / 1024 ** 3:.2f} Gb"
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def print_memory_info():
|
53 |
+
# todo
|
54 |
+
if device == "cpu":
|
55 |
+
pass
|
56 |
+
else:
|
57 |
+
print_cuda_memory_info()
|
58 |
+
|
59 |
+
|
60 |
+
def maybe_load_cached_pipeline(model_name):
|
61 |
+
model = cached_models.get(model_name)
|
62 |
+
if model is None:
|
63 |
+
downloaded_model_path = hf_hub_download(repo_id=model_name, filename=CHECKPOINT_FILENAME)
|
64 |
+
|
65 |
+
model = whisper.load_model(downloaded_model_path, device=device)
|
66 |
+
logger.info(f"`{model_name}` has been loaded on device `{device}`")
|
67 |
+
|
68 |
+
print_memory_info()
|
69 |
+
|
70 |
+
cached_models[model_name] = model
|
71 |
+
return model
|
72 |
+
|
73 |
+
|
74 |
+
def infer(model, filename, with_timestamps):
|
75 |
+
if with_timestamps:
|
76 |
+
model_outputs = model.transcribe(filename, **GEN_KWARGS)
|
77 |
+
return "\n\n".join(
|
78 |
+
[
|
79 |
+
f'Segment {segment["id"]+1} from {segment["start"]:.2f}s to {segment["end"]:.2f}s:\n{segment["text"].strip()}'
|
80 |
+
for segment in model_outputs["segments"]
|
81 |
+
]
|
82 |
+
)
|
83 |
+
else:
|
84 |
+
return model.transcribe(filename, without_timestamps=True, **GEN_KWARGS)["text"]
|
85 |
+
|
86 |
+
|
87 |
+
def download_from_youtube(yt_url, downloaded_filename="audio.wav"):
|
88 |
+
yt = pt.YouTube(yt_url)
|
89 |
+
stream = yt.streams.filter(only_audio=True)[0]
|
90 |
+
# stream.download(filename="audio.mp3")
|
91 |
+
stream.download(filename=downloaded_filename)
|
92 |
+
return downloaded_filename
|
93 |
+
|
94 |
+
|
95 |
+
def transcribe(microphone, file_upload, yt_url, with_timestamps, model_name=DEFAULT_MODEL_NAME):
|
96 |
+
warn_output = ""
|
97 |
+
if (microphone is not None) and (file_upload is not None) and (yt_url is not None):
|
98 |
+
warn_output = (
|
99 |
+
"WARNING: You've uploaded an audio file, used the microphone, and pasted a YouTube URL. "
|
100 |
+
"The recorded file from the microphone will be used, the uploaded audio and the YouTube URL will be discarded.\n"
|
101 |
+
)
|
102 |
+
|
103 |
+
if (microphone is not None) and (file_upload is not None):
|
104 |
+
warn_output = (
|
105 |
+
"WARNING: You've uploaded an audio file and used the microphone. "
|
106 |
+
"The recorded file from the microphone will be used and the uploaded audio will be discarded.\n"
|
107 |
+
)
|
108 |
+
|
109 |
+
if (microphone is not None) and (yt_url is not None):
|
110 |
+
warn_output = (
|
111 |
+
"WARNING: You've used the microphone and pasted a YouTube URL. "
|
112 |
+
"The recorded file from the microphone will be used and the YouTube URL will be discarded.\n"
|
113 |
+
)
|
114 |
+
|
115 |
+
if (file_upload is not None) and (yt_url is not None):
|
116 |
+
warn_output = (
|
117 |
+
"WARNING: You've uploaded an audio file and pasted a YouTube URL. "
|
118 |
+
"The uploaded audio will be used and the YouTube URL will be discarded.\n"
|
119 |
+
)
|
120 |
+
|
121 |
+
elif (microphone is None) and (file_upload is None) or (yt_url is None):
|
122 |
+
return "ERROR: You have to either use the microphone, upload an audio file or paste a YouTube URL"
|
123 |
+
|
124 |
+
if microphone is not None:
|
125 |
+
file = microphone
|
126 |
+
logging_prefix = f"Transcription by `{model_name}` of microphone:"
|
127 |
+
elif file_upload is not None:
|
128 |
+
file = file_upload
|
129 |
+
logging_prefix = f"Transcription by `{model_name}` of uploaded file:"
|
130 |
+
else:
|
131 |
+
file = download_from_youtube(yt_url)
|
132 |
+
logging_prefix = f'Transcription by `{model_name}` of "{yt_url}":'
|
133 |
+
|
134 |
+
model = maybe_load_cached_pipeline(model_name)
|
135 |
+
# text = model.transcribe(file, **GEN_KWARGS)["text"]
|
136 |
+
text = infer(model, file, with_timestamps)
|
137 |
+
|
138 |
+
logger.info(logging_prefix + "\n" + text)
|
139 |
+
|
140 |
+
return warn_output + text
|
141 |
+
|
142 |
+
|
143 |
+
# load default model
|
144 |
+
maybe_load_cached_pipeline(DEFAULT_MODEL_NAME)
|
145 |
+
|
146 |
+
demo = gr.Interface(
|
147 |
+
fn=transcribe,
|
148 |
+
inputs=[
|
149 |
+
gr.inputs.Audio(source="microphone", type="filepath", label="Record", optional=True),
|
150 |
+
gr.inputs.Audio(source="upload", type="filepath", label="Upload File", optional=True),
|
151 |
+
gr.inputs.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL", optional=True),
|
152 |
+
gr.Checkbox(label="With timestamps?", value=True),
|
153 |
+
],
|
154 |
+
# outputs="text",
|
155 |
+
outputs=gr.outputs.Textbox(label="Transcription"),
|
156 |
+
layout="horizontal",
|
157 |
+
theme="huggingface",
|
158 |
+
title="Whisper French Demo 🇫🇷 : Transcribe Audio",
|
159 |
+
description=(
|
160 |
+
"Transcribe long-form microphone or audio inputs with the click of a button! Demo uses the the fine-tuned"
|
161 |
+
f" checkpoint [{DEFAULT_MODEL_NAME}](https://huggingface.co/{DEFAULT_MODEL_NAME}) and 🤗 Transformers to transcribe audio files"
|
162 |
+
" of arbitrary length."
|
163 |
+
),
|
164 |
+
allow_flagging="never",
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
# demo.launch(server_name="0.0.0.0", debug=True, share=True)
|
169 |
+
demo.launch(enable_queue=True)
|