File size: 1,377 Bytes
47bea79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import streamlit as st
import pandas as pd
import rdkit
import streamlit_ketcher
from streamlit_ketcher import st_ketcher
import abcBERT

# Page setup
st.set_page_config(page_title="DeepAcceptor", page_icon="🔋", layout="wide")
st.title("DeepAcceptor")

# Connect to the Google Sheet
url1 = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=accept"
url = r"https://docs.google.com/spreadsheets/d/1YOEIg0nMTSPkAOr8wkqxQRLuUhys3-J0I-KPEpmzPLw/gviz/tq?tqx=out:csv&sheet=111"
df1 = pd.read_csv(url1, dtype=str, encoding='utf-8')

text_search = st.text_input("Search papers or molecules", value="")
m1 = df1["name"].str.contains(text_search)
m2 = df1["reference"].str.contains(text_search)
df_search = df1[m1 | m2]
if text_search:
    st.write(df_search)
    st.download_button( "Download edited files as .csv", df_search.to_csv(), "df_search.csv", use_container_width=True)
edited_df = st.data_editor(df1, num_rows="dynamic")
edited_df.to_csv(url)
st.download_button(
    "⬇️ Download edited files as .csv", edited_df.to_csv(), "edited_df.csv", use_container_width=True
)

molecule = st.text_input("Molecule")
smile_code = st_ketcher(molecule)
st.markdown(f"Smile code: ``{smile_code}``")
try:
    pce = abcBERT.main( str(smile_code ) )
    st.markdown(f"PCE: ``{pce}``")
except:
    st.markdown(f"PCE:  None  ")