Spaces:
Sleeping
Sleeping
import gradio as gr | |
import spaces | |
from transformers import pipeline | |
import torch | |
DESCRIPTION=""" | |
This is the space for the Language Modeling Group at TABILAB in Computer Engineering of Bogazici University. | |
We released the first version of our Turkish language model TURNA. | |
This model is based on an encoder-decoder T5 architecture with 1.1B parameters. | |
For more details, please refer to our paper. | |
**Note:** First inference might take time as the models are downloaded on-the-go. | |
""" | |
sentiment_example = [["Bu üründen çok memnun kaldım."]] | |
long_text = [["Eyfel Kulesi (Fransızca: La tour Eiffel [la tuʀ ɛˈfɛl]), Paris'teki demir kule. Kule, aynı zamanda tüm dünyada Fransa'nın sembolü halini almıştır. İsmini, inşa ettiren Fransız inşaat mühendisi Gustave Eiffel'den alır.[1] En büyük turizm cazibelerinden biri olan Eyfel Kulesi, yılda 6 milyon turist çeker. 2002 yılında toplam ziyaretçi sayısı 200 milyona ulaşmıştır."]] | |
ner_example = [["Benim adım Turna."]] | |
t2t_example = [["Paraphrase: Bu üründen çok memnun kaldım."]] | |
nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]] | |
text_category_example = [[" anadolu_efes e 18 lik star ! beko_basketbol_ligi nde iddialı bir kadroyla sezona giren anadolu_efes transfer harekatına devam ediyor"]] | |
def nli(input, model_choice="turna_nli_nli_tr"): | |
if model_choice=="turna_nli_nli_tr": | |
nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0) | |
return nli_model(input)[0]["generated_text"] | |
else: | |
stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0) | |
return stsb_model(input)[0]["generated_text"] | |
def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"): | |
if model_choice=="turna_classification_17bintweet_sentiment": | |
sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0) | |
return sentiment_model(input)[0]["generated_text"] | |
else: | |
product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0) | |
return product_reviews(input)[0]["generated_text"] | |
def pos(input, model_choice="turna_pos_imst"): | |
if model_choice=="turna_pos_imst": | |
pos_imst = pipeline(model="boun-tabi-LMG/turna_pos_imst", device=0) | |
return pos_imst(input)[0]["generated_text"] | |
else: | |
pos_boun = pipeline(model="boun-tabi-LMG/turna_pos_boun", device=0) | |
return pos_boun(input)[0]["generated_text"] | |
def ner(input, model_choice="turna_ner_wikiann"): | |
if model_choice=="turna_ner_wikiann": | |
ner_wikiann = pipeline(model="boun-tabi-LMG/turna_ner_wikiann", device=0) | |
return ner_wikiann(input)[0]["generated_text"] | |
else: | |
ner_model = pipeline(model="boun-tabi-LMG/turna_ner_milliyet", device=0) | |
return ner_model(input)[0]["generated_text"] | |
def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"): | |
if model_choice=="turna_paraphrasing_tatoeba": | |
paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0) | |
return paraphrasing(input)[0]["generated_text"] | |
else: | |
paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0) | |
return paraphrasing_sub(input)[0]["generated_text"] | |
def summarize(input, model_choice="turna_summarization_tr_news"): | |
if model_choice=="turna_summarization_tr_news": | |
news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0) | |
return news_sum(input)[0]["generated_text"] | |
else: | |
summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0) | |
return summarization_model(input)[0]["generated_text"] | |
def categorize(input): | |
ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0) | |
return ttc(input)[0]["generated_text"] | |
def turna(input, max_new_tokens, length_penalty, | |
top_k, top_p, temp, num_beams, | |
do_sample, no_repeat_ngram_size, repetition_penalty): | |
turna = pipeline(model="boun-tabi-LMG/TURNA", device=0) | |
input = f"[S2S] {input}<EOS>" | |
return turna(input, max_new_tokens = max_new_tokens, length_penalty=length_penalty, | |
top_k=top_k, top_p=top_p, temperature=temp, num_beams=num_beams, | |
do_sample = do_sample, no_repeat_ngram_size=no_repeat_ngram_size, repetition_penalty=repetition_penalty)[0]["generated_text"] | |
with gr.Blocks(theme="abidlabs/Lime") as demo: | |
gr.Markdown("# TURNA 🐦") | |
gr.Markdown(DESCRIPTION) | |
with gr.Tab("Sentiment Analysis"): | |
gr.Markdown("TURNA fine-tuned on sentiment analysis. Enter text to analyse sentiment and pick the model (tweets or product reviews).") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
sentiment_choice = gr.Radio(choices = ["turna_classification_17bintweet_sentiment", "turna_classification_tr_product_reviews"], label ="Model", value="turna_classification_17bintweet_sentiment") | |
sentiment_input = gr.Textbox(label="Sentiment Analysis Input") | |
sentiment_submit = gr.Button() | |
sentiment_output = gr.Textbox(label="Sentiment Analysis Output") | |
sentiment_submit.click(sentiment_analysis, inputs=[sentiment_input, sentiment_choice], outputs=sentiment_output) | |
sentiment_examples = gr.Examples(examples = sentiment_example, inputs = [sentiment_input, sentiment_choice], outputs=sentiment_output, fn=sentiment_analysis) | |
with gr.Tab("TURNA 🐦"): | |
gr.Markdown("Pre-trained TURNA. Enter text to start generating.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Accordion("Advanced Generation Parameters"): | |
max_new_tokens = gr.Slider(label = "Maximum length", | |
minimum = 0, | |
maximum = 512, | |
value = 128) | |
length_penalty = gr.Slider(label = "Length penalty", | |
value=1.0) | |
top_k = gr.Slider(label = "Top-k", value=10) | |
top_p = gr.Slider(label = "Top-p", value=0.95) | |
temp = gr.Slider(label = "Temperature", value=1.0, minimum=0.1, maximum=100.0) | |
no_repeat_ngram_size =gr.Slider(label="No Repeat N-Gram Size", minimum=0,value=3,) | |
repetition_penalty = gr.Slider(label = "Repetition Penalty", minimum=0.0, value=3.1, step=0.1) | |
num_beams = gr.Slider(label = "Number of beams", minimum=1, | |
maximum=10, value=3) | |
do_sample = gr.Radio(choices = [True, False], value = True, label = "Sampling") | |
with gr.Column(): | |
text_gen_input = gr.Textbox(label="Text Generation Input") | |
text_gen_submit = gr.Button() | |
text_gen_output = gr.Textbox(label="Text Generation Output") | |
text_gen_submit.click(turna, inputs=[text_gen_input, max_new_tokens, length_penalty, | |
top_k, top_p, temp, num_beams, | |
do_sample, no_repeat_ngram_size, repetition_penalty], outputs=text_gen_output) | |
text_gen_example = [["Bir varmış, bir yokmuş, evvel zaman içinde, kalbur saman içinde, uzak diyarların birinde bir turna"]] | |
text_gen_examples = gr.Examples(examples = text_gen_example, inputs = [text_gen_input, max_new_tokens, length_penalty, | |
top_k, top_p, temp, num_beams, do_sample, no_repeat_ngram_size, repetition_penalty], outputs=text_gen_output, fn=turna) | |
with gr.Tab("Text Categorization"): | |
gr.Markdown("TURNA fine-tuned on text categorization. Enter text to categorize text or try the example.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
text_input = gr.Textbox(label="Text Categorization Input") | |
text_submit = gr.Button() | |
text_output = gr.Textbox(label="Text Categorization Output") | |
text_submit.click(categorize, inputs=[text_input], outputs=text_output) | |
text_examples = gr.Examples(examples = text_category_example,inputs=[text_input], outputs=text_output, fn=categorize) | |
with gr.Tab("NLI"): | |
gr.Markdown("TURNA fine-tuned on natural language inference. Enter text to infer entailment and pick the model. You can also check for semantic similarity entailment.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
nli_choice = gr.Radio(choices = ["turna_nli_nli_tr", "turna_semantic_similarity_stsb_tr"], label ="Model", value="turna_nli_nli_tr") | |
nli_input = gr.Textbox(label="NLI Input") | |
nli_submit = gr.Button() | |
nli_output = gr.Textbox(label="NLI Output") | |
nli_submit.click(nli, inputs=[nli_input, nli_choice], outputs=nli_output) | |
nli_examples = gr.Examples(examples = nli_example, inputs = [nli_input, nli_choice], outputs=nli_output, fn=nli) | |
with gr.Tab("POS"): | |
gr.Markdown("TURNA fine-tuned on part-of-speech-tagging. Enter text to parse parts of speech and pick the model.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
pos_choice = gr.Radio(choices = ["turna_pos_imst", "turna_pos_boun"], label ="Model", value="turna_pos_imst") | |
pos_input = gr.Textbox(label="POS Input") | |
pos_submit = gr.Button() | |
pos_output = gr.Textbox(label="POS Output") | |
pos_submit.click(pos, inputs=[pos_input, pos_choice], outputs=pos_output) | |
pos_examples = gr.Examples(examples = ner_example, inputs = [pos_input, pos_choice], outputs=pos_output, fn=pos) | |
with gr.Tab("NER"): | |
gr.Markdown("TURNA fine-tuned on named entity recognition. Enter text to parse named entities and pick the model.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
ner_choice = gr.Radio(choices = ["turna_ner_wikiann", "turna_ner_milliyet"], label ="Model", value="turna_ner_wikiann") | |
ner_input = gr.Textbox(label="NER Input") | |
ner_submit = gr.Button() | |
ner_output = gr.Textbox(label="NER Output") | |
ner_submit.click(ner, inputs=[ner_input, ner_choice], outputs=ner_output) | |
ner_examples = gr.Examples(examples = ner_example, inputs = [ner_input, ner_choice], outputs=ner_output, fn=ner) | |
with gr.Tab("Paraphrase"): | |
gr.Markdown("TURNA fine-tuned on paraphrasing. Enter text to paraphrase and pick the model.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
paraphrasing_choice = gr.Radio(choices = ["turna_paraphrasing_tatoeba", "turna_paraphrasing_opensubtitles"], label ="Model", value="turna_paraphrasing_tatoeba") | |
paraphrasing_input = gr.Textbox(label = "Paraphrasing Input") | |
paraphrasing_submit = gr.Button() | |
paraphrasing_output = gr.Text(label="Paraphrasing Output") | |
paraphrasing_submit.click(paraphrase, inputs=[paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output) | |
paraphrase_examples = gr.Examples(examples = long_text, inputs = [paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output, fn=paraphrase) | |
with gr.Tab("Summarization"): | |
gr.Markdown("TURNA fine-tuned on summarization. Enter text to summarize and pick the model.") | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(): | |
sum_choice = gr.Radio(choices = ["turna_summarization_mlsum", "turna_summarization_tr_news"], label ="Model", value="turna_summarization_mlsum") | |
sum_input = gr.Textbox(label = "Summarization Input") | |
sum_submit = gr.Button() | |
sum_output = gr.Textbox(label = "Summarization Output") | |
sum_submit.click(summarize, inputs=[sum_input, sum_choice], outputs=sum_output) | |
sum_examples = gr.Examples(examples = long_text, inputs = [sum_input, sum_choice], outputs=sum_output, fn=summarize) | |
demo.launch() |