merve HF staff commited on
Commit
0325d36
1 Parent(s): e3def2b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +50 -32
app.py CHANGED
@@ -12,7 +12,7 @@ This model is based on an encoder-decoder T5 architecture with 1.1B parameters.
12
 
13
  For more details, please refer to our paper.
14
 
15
- Note: First inference might take time as the models are downloaded on-the-go.
16
 
17
  """
18
 
@@ -24,44 +24,31 @@ t2t_example = [["Paraphrase: Bu üründen çok memnun kaldım."]]
24
  nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
25
 
26
 
27
- #ttc = pipeline(model="boun-tabi-LMG/turna_classification_ttc4900", device=0)
28
- # examples =long_text, title="Text Categorization")
29
- #product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
30
- #title_gen = pipeline(model="boun-tabi-LMG/turna_title_generation_mlsum", device=0)
31
 
32
 
33
  @spaces.GPU
34
  def nli(input, model_choice="turna_nli_nli_tr"):
35
- nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
36
- stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
37
-
38
  if model_choice=="turna_nli_nli_tr":
 
39
  return nli_model(input)[0]["generated_text"]
40
  else:
41
- return stsb_model(input)[0]["generated_text"]
42
 
43
- @spaces.GPU
44
- def nli(input, model_choice="turna_nli_nli_tr"):
45
- nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
46
- stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
47
-
48
- if model_choice=="turna_nli_nli_tr":
49
- return nli_model(input)[0]["generated_text"]
50
- else:
51
  return stsb_model(input)[0]["generated_text"]
52
 
 
53
  @spaces.GPU
54
  def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"):
55
- product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
56
- sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
57
  if model_choice=="turna_classification_17bintweet_sentiment":
 
 
58
  return sentiment_model(input)[0]["generated_text"]
59
  else:
 
 
60
  return product_reviews(input)[0]["generated_text"]
61
 
62
- @spaces.GPU
63
- def t2t(input):
64
- return t2t_gen_model(input)
65
 
66
  @spaces.GPU
67
  def pos(input, model_choice="turna_pos_imst"):
@@ -84,20 +71,22 @@ def ner(input, model_choice="turna_ner_wikiann"):
84
 
85
  @spaces.GPU
86
  def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"):
87
- paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
88
- paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
89
  if model_choice=="turna_paraphrasing_tatoeba":
 
90
  return paraphrasing(input)[0]["generated_text"]
91
  else:
 
 
92
  return paraphrasing_sub(input)[0]["generated_text"]
93
 
94
  @spaces.GPU
95
  def summarize(input, model_choice="turna_summarization_tr_news"):
96
- summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
97
- news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
98
  if model_choice=="turna_summarization_tr_news":
 
 
99
  return news_sum(input)[0]["generated_text"]
100
  else:
 
101
  return summarization_model(input)[0]["generated_text"]
102
 
103
 
@@ -105,15 +94,44 @@ def summarize(input, model_choice="turna_summarization_tr_news"):
105
  with gr.Blocks(theme="soft") as demo:
106
  gr.Markdown("# TURNA 🐦")
107
  gr.Markdown(DESCRIPTION)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
  with gr.Tab("POS"):
109
  gr.Markdown("TURNA fine-tuned on part-of-speech-tagging. Enter text to parse parts of speech and pick the model.")
110
  with gr.Column():
111
  with gr.Row():
112
  with gr.Column():
113
- pos_choice = gr.Radio(choices = ["turna_pos_imst", "turna_pos_boun"], label ="Model")
114
  pos_input = gr.Textbox(label="POS Input")
115
- pos_output = gr.Textbox(label="POS Output")
116
  pos_submit = gr.Button()
 
117
  pos_submit.click(pos, inputs=[pos_input, pos_choice], outputs=pos_output)
118
  pos_examples = gr.Examples(examples = ner_example, inputs = [pos_input, pos_choice], outputs=pos_output, fn=pos)
119
 
@@ -122,7 +140,7 @@ with gr.Blocks(theme="soft") as demo:
122
  with gr.Column():
123
  with gr.Row():
124
  with gr.Column():
125
- ner_choice = gr.Radio(choices = ["turna_ner_wikiann", "turna_ner_milliyet"], label ="Model")
126
  ner_input = gr.Textbox(label="NER Input")
127
  ner_submit = gr.Button()
128
  ner_output = gr.Textbox(label="NER Output")
@@ -134,10 +152,10 @@ with gr.Blocks(theme="soft") as demo:
134
  with gr.Column():
135
  with gr.Row():
136
  with gr.Column():
137
- paraphrasing_choice = gr.Radio(choices = ["turna_paraphrasing_tatoeba", "turna_paraphrasing_opensubtitles"], label ="Model")
138
  paraphrasing_input = gr.Textbox(label = "Paraphrasing Input")
139
  paraphrasing_submit = gr.Button()
140
- paraphrasing_output = gr.Text(label="Paraphrasing Output")
141
 
142
  paraphrasing_submit.click(paraphrase, inputs=[paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output)
143
  paraphrase_examples = gr.Examples(examples = long_text, inputs = [paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output, fn=paraphrase)
@@ -146,7 +164,7 @@ with gr.Blocks(theme="soft") as demo:
146
  with gr.Column():
147
  with gr.Row():
148
  with gr.Column():
149
- sum_choice = gr.Radio(choices = ["turna_summarization_mlsum", "turna_summarization_tr_news"], label ="Model")
150
  sum_input = gr.Textbox(label = "Summarization Input")
151
  sum_submit = gr.Button()
152
  sum_output = gr.Textbox(label = "Summarization Output")
 
12
 
13
  For more details, please refer to our paper.
14
 
15
+ **Note:** First inference might take time as the models are downloaded on-the-go.
16
 
17
  """
18
 
 
24
  nli_example = [["Bunu çok beğendim. Bunu çok sevdim."]]
25
 
26
 
 
 
 
 
27
 
28
 
29
  @spaces.GPU
30
  def nli(input, model_choice="turna_nli_nli_tr"):
31
+
 
 
32
  if model_choice=="turna_nli_nli_tr":
33
+ nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
34
  return nli_model(input)[0]["generated_text"]
35
  else:
36
+ stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
37
 
 
 
 
 
 
 
 
 
38
  return stsb_model(input)[0]["generated_text"]
39
 
40
+
41
  @spaces.GPU
42
  def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"):
 
 
43
  if model_choice=="turna_classification_17bintweet_sentiment":
44
+ sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
45
+
46
  return sentiment_model(input)[0]["generated_text"]
47
  else:
48
+ product_reviews = pipeline(model="boun-tabi-LMG/turna_classification_tr_product_reviews", device=0)
49
+
50
  return product_reviews(input)[0]["generated_text"]
51
 
 
 
 
52
 
53
  @spaces.GPU
54
  def pos(input, model_choice="turna_pos_imst"):
 
71
 
72
  @spaces.GPU
73
  def paraphrase(input, model_choice="turna_paraphrasing_tatoeba"):
 
 
74
  if model_choice=="turna_paraphrasing_tatoeba":
75
+ paraphrasing = pipeline(model="boun-tabi-LMG/turna_paraphrasing_tatoeba", device=0)
76
  return paraphrasing(input)[0]["generated_text"]
77
  else:
78
+ paraphrasing_sub = pipeline(model="boun-tabi-LMG/turna_paraphrasing_opensubtitles", device=0)
79
+
80
  return paraphrasing_sub(input)[0]["generated_text"]
81
 
82
  @spaces.GPU
83
  def summarize(input, model_choice="turna_summarization_tr_news"):
 
 
84
  if model_choice=="turna_summarization_tr_news":
85
+ news_sum = pipeline(model="boun-tabi-LMG/turna_summarization_tr_news", device=0)
86
+
87
  return news_sum(input)[0]["generated_text"]
88
  else:
89
+ summarization_model = pipeline(model="boun-tabi-LMG/turna_summarization_mlsum", device=0)
90
  return summarization_model(input)[0]["generated_text"]
91
 
92
 
 
94
  with gr.Blocks(theme="soft") as demo:
95
  gr.Markdown("# TURNA 🐦")
96
  gr.Markdown(DESCRIPTION)
97
+
98
+ with gr.Tab("Sentiment Analysis"):
99
+ gr.Markdown("TURNA fine-tuned on sentiment analysis. Enter text to analyse sentiment and pick the model (tweets or product reviews).")
100
+ with gr.Column():
101
+ with gr.Row():
102
+ with gr.Column():
103
+ sentiment_choice = gr.Radio(choices = ["turna_classification_17bintweet_sentiment", "turna_classification_tr_product_reviews"], label ="Model", value="turna_classification_17bintweet_sentiment")
104
+ sentiment_input = gr.Textbox(label="Sentiment Analysis Input")
105
+
106
+ sentiment_submit = gr.Button()
107
+ sentiment_output = gr.Textbox(label="Sentiment Analysis Output")
108
+ sentiment_submit.click(nli, inputs=[pos_input, nli_choice], outputs=pos_output)
109
+ sentiment_examples = gr.Examples(examples = sentiment_example, inputs = [sentiment_input, sentiment_choice], outputs=sentiment_output, fn=sentiment)
110
+
111
+
112
+ with gr.Tab("NLI"):
113
+ gr.Markdown("TURNA fine-tuned on natural language inference. Enter text to infer entailment and pick the model. You can also check for semantic similarity entailment.")
114
+ with gr.Column():
115
+ with gr.Row():
116
+ with gr.Column():
117
+ nli_choice = gr.Radio(choices = ["turna_nli_nli_tr", "turna_semantic_similarity_stsb_tr"], label ="Model", value="turna_nli_nli_tr")
118
+ nli_input = gr.Textbox(label="NLI Input")
119
+
120
+ nli_submit = gr.Button()
121
+ nli_output = gr.Textbox(label="NLI Output")
122
+ nli_submit.click(nli, inputs=[pos_input, nli_choice], outputs=pos_output)
123
+ nli_examples = gr.Examples(examples = nli_example, inputs = [nli_input, nli_choice], outputs=nli_output, fn=nli)
124
+
125
  with gr.Tab("POS"):
126
  gr.Markdown("TURNA fine-tuned on part-of-speech-tagging. Enter text to parse parts of speech and pick the model.")
127
  with gr.Column():
128
  with gr.Row():
129
  with gr.Column():
130
+ pos_choice = gr.Radio(choices = ["turna_pos_imst", "turna_pos_boun"], label ="Model", value="turna_pos_imst")
131
  pos_input = gr.Textbox(label="POS Input")
132
+
133
  pos_submit = gr.Button()
134
+ pos_output = gr.Textbox(label="POS Output")
135
  pos_submit.click(pos, inputs=[pos_input, pos_choice], outputs=pos_output)
136
  pos_examples = gr.Examples(examples = ner_example, inputs = [pos_input, pos_choice], outputs=pos_output, fn=pos)
137
 
 
140
  with gr.Column():
141
  with gr.Row():
142
  with gr.Column():
143
+ ner_choice = gr.Radio(choices = ["turna_ner_wikiann", "turna_ner_milliyet"], label ="Model", value="turna_ner_wikiann")
144
  ner_input = gr.Textbox(label="NER Input")
145
  ner_submit = gr.Button()
146
  ner_output = gr.Textbox(label="NER Output")
 
152
  with gr.Column():
153
  with gr.Row():
154
  with gr.Column():
155
+ paraphrasing_choice = gr.Radio(choices = ["turna_paraphrasing_tatoeba", "turna_paraphrasing_opensubtitles"], label ="Model", value="turna_paraphrasing_tatoeba")
156
  paraphrasing_input = gr.Textbox(label = "Paraphrasing Input")
157
  paraphrasing_submit = gr.Button()
158
+ paraphrasing_output = gr.Text(label="Paraphrasing Output")
159
 
160
  paraphrasing_submit.click(paraphrase, inputs=[paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output)
161
  paraphrase_examples = gr.Examples(examples = long_text, inputs = [paraphrasing_input, paraphrasing_choice], outputs=paraphrasing_output, fn=paraphrase)
 
164
  with gr.Column():
165
  with gr.Row():
166
  with gr.Column():
167
+ sum_choice = gr.Radio(choices = ["turna_summarization_mlsum", "turna_summarization_tr_news"], label ="Model", value="turna_summarization_mlsum")
168
  sum_input = gr.Textbox(label = "Summarization Input")
169
  sum_submit = gr.Button()
170
  sum_output = gr.Textbox(label = "Summarization Output")