Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -27,19 +27,19 @@ text_category_example = [[" anadolu_efes e 18 lik star ! beko_basketbol_ligi nde
|
|
27 |
|
28 |
|
29 |
@spaces.GPU
|
30 |
-
def nli(input, model_choice="turna_nli_nli_tr"
|
31 |
|
32 |
if model_choice=="turna_nli_nli_tr":
|
33 |
-
nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0
|
34 |
return nli_model(input)[0]["generated_text"]
|
35 |
else:
|
36 |
-
stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0
|
37 |
|
38 |
return stsb_model(input)[0]["generated_text"]
|
39 |
|
40 |
|
41 |
@spaces.GPU
|
42 |
-
def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"
|
43 |
if model_choice=="turna_classification_17bintweet_sentiment":
|
44 |
sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
|
45 |
|
|
|
27 |
|
28 |
|
29 |
@spaces.GPU
|
30 |
+
def nli(input, model_choice="turna_nli_nli_tr"):
|
31 |
|
32 |
if model_choice=="turna_nli_nli_tr":
|
33 |
+
nli_model = pipeline(model="boun-tabi-LMG/turna_nli_nli_tr", device=0)
|
34 |
return nli_model(input)[0]["generated_text"]
|
35 |
else:
|
36 |
+
stsb_model = pipeline(model="boun-tabi-LMG/turna_semantic_similarity_stsb_tr", device=0)
|
37 |
|
38 |
return stsb_model(input)[0]["generated_text"]
|
39 |
|
40 |
|
41 |
@spaces.GPU
|
42 |
+
def sentiment_analysis(input, model_choice="turna_classification_17bintweet_sentiment"):
|
43 |
if model_choice=="turna_classification_17bintweet_sentiment":
|
44 |
sentiment_model = pipeline(model="boun-tabi-LMG/turna_classification_17bintweet_sentiment", device=0)
|
45 |
|