Spaces:
Runtime error
Runtime error
File size: 3,037 Bytes
4a4e551 7f1f820 4a4e551 ba22794 1035aed ba22794 1035aed ba22794 1035aed ba22794 1035aed ba22794 1035aed ba22794 1035aed 98793d5 1035aed ba22794 1035aed a2b1396 1035aed a2b1396 24da1a9 a2b1396 1035aed a2b1396 24da1a9 2ecade9 a2b1396 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import requests
import streamlit as st
import time
from transformers import pipeline
import os
from .utils import query
def write():
st.markdown(
"""
<h1 style="text-align:left;">TURNA</h1>
""",
unsafe_allow_html=True,
)
st.write("#")
col = st.columns(2)
col[0].image("images/turna-logo.png", width=100)
st.markdown(
"""
<h3 style="text-align:right;">TURNA is a Turkish encoder-decoder language model.</h3>
<p style="text-align:right;"><p>
<p style="text-align:right;">Use the generation parameters on the sidebar to adjust generation quality.</p>
<p style="text-align:right;"><p>
""",
unsafe_allow_html=True,
)
#st.title('Turkish Language Generation')
#st.write('...with Turna')
# Sidebar
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
st.sidebar.subheader("Configurable parameters")
max_new_tokens = st.sidebar.number_input(
"Maximum length",
min_value=0,
max_value=512,
value=128,
help="The maximum length of the sequence to be generated.",
)
length_penalty = st.sidebar.number_input(
"Length penalty",
value=1.0,
help=" length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. ",
)
do_sample = st.sidebar.selectbox(
"Sampling?",
(True, False),
help="Whether or not to use sampling; use greedy decoding otherwise.",
)
num_beams = st.sidebar.number_input(
"Number of beams",
min_value=1,
max_value=10,
value=3,
help="The number of beams to use for beam search.",
)
repetition_penalty = st.sidebar.number_input(
"Repetition Penalty",
min_value=0.0,
value=3.0,
step=0.1,
help="The parameter for repetition penalty. 1.0 means no penalty",
)
no_repeat_ngram_size = st.sidebar.number_input(
"No Repeat N-Gram Size",
min_value=0,
value=3,
help="If set to int > 0, all ngrams of that size can only occur once.",
)
temp = st.sidebar.slider(
"Temperature",
value=1.0,
min_value=0.1,
max_value=100.0,
help="The value used to module the next token probabilities.",
)
top_k = st.sidebar.number_input(
"Top k",
value=10,
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.",
)
top_p = st.sidebar.number_input(
"Top p",
value=0.95,
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.",
)
input_text = st.text_area(label='Enter a text: ', height=100,
value="Türkiye'nin başkenti neresidir?")
url = "https://api-inference.huggingface.co/models/boun-tabi-LMG/TURNA"
params = {"length_penalty": length_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "max_new_tokens": max_new_tokens,
"do_sample":do_sample, "num_beams":num_beams, "repetition_penalty":repetition_penalty,
"top_p":top_p, "top_k":top_k, "temperature":temp, "early_stopping": True}
if st.button("Generate"):
with st.spinner('Generating...'):
output = query(input_text, url, params)
st.success(output)
|