TURNA / apps /sentiment.py
yirmibesogluz's picture
Added classification tasks
9ab8c93
raw
history blame
1.62 kB
import requests
import streamlit as st
import time
from transformers import pipeline
import os
from .utils import query
HF_AUTH_TOKEN = os.getenv('HF_AUTH_TOKEN')
headers = {"Authorization": f"Bearer {HF_AUTH_TOKEN}"}
def write():
st.markdown("# Sentiment Classification")
st.sidebar.header("Sentiment Classification")
st.write(
"""Here, you can perform sentiment classification using the fine-tuned TURNA classification models. """
)
# Sidebar
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py
st.sidebar.subheader("Configurable parameters")
model_name = st.sidebar.selectbox(
"Model Selector",
options=[
"turna_classification_17bintweet_sentiment",
"turna_classification_17bintweet_sentiment_NLU",
"turna_classification_17bintweet_sentiment_NLG",
"turna_classification_17bintweet_sentiment_S2S",
"turna_classification_tr_product_reviews",
"turna_classification_tr_product_reviews_NLU",
"turna_classification_tr_product_reviews_NLG",
"turna_classification_tr_product_reviews_S2S",
],
index=0,
)
"""max_new_tokens = st.sidebar.number_input(
"Maximum length",
min_value=0,
max_value=20,
value=20,
help="The maximum length of the sequence to be generated.",
)"""
input_text = st.text_area(label='Enter a text: ', height=100,
value="sonunda bugün kurtuldum senden")
url = ("https://api-inference.huggingface.co/models/boun-tabi-LMG/" + model_name.lower())
params = {"max_new_tokens": 4 }
if st.button("Generate"):
with st.spinner('Generating...'):
output = query(input_text, url, params)
st.success(output)