Spaces:
Runtime error
Runtime error
import requests | |
import streamlit as st | |
import time | |
from transformers import pipeline | |
import os | |
from .utils import query | |
def write(): | |
st.markdown( | |
""" | |
<h1 style="text-align:left;">TURNA</h1> | |
""", | |
unsafe_allow_html=True, | |
) | |
st.write("#") | |
col = st.columns(2) | |
col[0].image("images/turna-logo.png", width=100) | |
st.markdown( | |
""" | |
<h3 style="text-align:right;">TURNA is a Turkish encoder-decoder language model.</h3> | |
<p style="text-align:right;"><p> | |
<p style="text-align:right;">Use the generation parameters on the sidebar to adjust generation quality.</p> | |
<p style="text-align:right;"><p> | |
""", | |
unsafe_allow_html=True, | |
) | |
#st.title('Turkish Language Generation') | |
#st.write('...with Turna') | |
# Sidebar | |
# Taken from https://huggingface.co/spaces/flax-community/spanish-gpt2/blob/main/app.py | |
st.sidebar.subheader("Configurable parameters") | |
max_new_tokens = st.sidebar.number_input( | |
"Maximum length", | |
min_value=0, | |
max_value=512, | |
value=128, | |
help="The maximum length of the sequence to be generated.", | |
) | |
length_penalty = st.sidebar.number_input( | |
"Length penalty", | |
value=1.0, | |
help=" length_penalty > 0.0 promotes longer sequences, while length_penalty < 0.0 encourages shorter sequences. ", | |
) | |
do_sample = st.sidebar.selectbox( | |
"Sampling?", | |
(True, False), | |
help="Whether or not to use sampling; use greedy decoding otherwise.", | |
) | |
num_beams = st.sidebar.number_input( | |
"Number of beams", | |
min_value=1, | |
max_value=10, | |
value=3, | |
help="The number of beams to use for beam search.", | |
) | |
repetition_penalty = st.sidebar.number_input( | |
"Repetition Penalty", | |
min_value=0.0, | |
value=3.0, | |
step=0.1, | |
help="The parameter for repetition penalty. 1.0 means no penalty", | |
) | |
no_repeat_ngram_size = st.sidebar.number_input( | |
"No Repeat N-Gram Size", | |
min_value=0, | |
value=3, | |
help="If set to int > 0, all ngrams of that size can only occur once.", | |
) | |
temp = st.sidebar.slider( | |
"Temperature", | |
value=1.0, | |
min_value=0.1, | |
max_value=100.0, | |
help="The value used to module the next token probabilities.", | |
) | |
top_k = st.sidebar.number_input( | |
"Top k", | |
value=10, | |
help="The number of highest probability vocabulary tokens to keep for top-k-filtering.", | |
) | |
top_p = st.sidebar.number_input( | |
"Top p", | |
value=0.95, | |
help=" If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.", | |
) | |
input_text = st.text_area(label='Enter a text: ', height=100, | |
value="Türkiye'nin başkenti neresidir?") | |
url = "https://api-inference.huggingface.co/models/boun-tabi-LMG/TURNA" | |
params = {"length_penalty": length_penalty, "no_repeat_ngram_size": no_repeat_ngram_size, "max_new_tokens": max_new_tokens, | |
"do_sample":do_sample, "num_beams":num_beams, "repetition_penalty":repetition_penalty, | |
"top_p":top_p, "top_k":top_k, "temperature":temp, "early_stopping": True, "max_length": 256} | |
if st.button("Generate"): | |
with st.spinner('Generating...'): | |
output = query(f'[S2S] {input_text}<EOS>', url, params) | |
st.success(output) | |