docred / official.py
bowdbeg's picture
update
ba888e1
raw
history blame
5.51 kB
#!/usr/bin/env python
import json
import os
import os.path
import sys
def gen_train_facts(data_file_name, truth_dir):
fact_file_name = data_file_name[data_file_name.find("train_") :]
fact_file_name = os.path.join(truth_dir, fact_file_name.replace(".json", ".fact"))
if os.path.exists(fact_file_name):
fact_in_train = set([])
triples = json.load(open(fact_file_name))
for x in triples:
fact_in_train.add(tuple(x))
return fact_in_train
fact_in_train = set([])
ori_data = json.load(open(data_file_name))
for data in ori_data:
vertexSet = data["vertexSet"]
for label in data["labels"]:
rel = label["r"]
for n1 in vertexSet[label["h"]]:
for n2 in vertexSet[label["t"]]:
fact_in_train.add((n1["name"], n2["name"], rel))
json.dump(list(fact_in_train), open(fact_file_name, "w"))
return fact_in_train
input_dir = sys.argv[1]
output_dir = sys.argv[2]
submit_dir = os.path.join(input_dir, "res")
truth_dir = os.path.join(input_dir, "ref")
if not os.path.isdir(submit_dir):
print("%s doesn't exist" % submit_dir)
if os.path.isdir(submit_dir) and os.path.isdir(truth_dir):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
fact_in_train_annotated = gen_train_facts("../data/train_annotated.json", truth_dir)
fact_in_train_distant = gen_train_facts("../data/train_distant.json", truth_dir)
output_filename = os.path.join(output_dir, "scores.txt")
output_file = open(output_filename, "w")
truth_file = os.path.join(truth_dir, "dev_test.json")
truth = json.load(open(truth_file))
std = {}
tot_evidences = 0
titleset = set([])
title2vectexSet = {}
for x in truth:
title = x["title"]
titleset.add(title)
vertexSet = x["vertexSet"]
title2vectexSet[title] = vertexSet
for label in x["labels"]:
r = label["r"]
h_idx = label["h"]
t_idx = label["t"]
std[(title, r, h_idx, t_idx)] = set(label["evidence"])
tot_evidences += len(label["evidence"])
tot_relations = len(std)
submission_answer_file = os.path.join(submit_dir, "result.json")
tmp = json.load(open(submission_answer_file))
tmp.sort(key=lambda x: (x["title"], x["h_idx"], x["t_idx"], x["r"]))
submission_answer = [tmp[0]]
for i in range(1, len(tmp)):
x = tmp[i]
y = tmp[i - 1]
if (x["title"], x["h_idx"], x["t_idx"], x["r"]) != (y["title"], y["h_idx"], y["t_idx"], y["r"]):
submission_answer.append(tmp[i])
correct_re = 0
correct_evidence = 0
pred_evi = 0
correct_in_train_annotated = 0
correct_in_train_distant = 0
titleset2 = set([])
for x in submission_answer:
title = x["title"]
h_idx = x["h_idx"]
t_idx = x["t_idx"]
r = x["r"]
titleset2.add(title)
if title not in title2vectexSet:
continue
vertexSet = title2vectexSet[title]
if "evidence" in x:
evi = set(x["evidence"])
else:
evi = set([])
pred_evi += len(evi)
if (title, r, h_idx, t_idx) in std:
correct_re += 1
stdevi = std[(title, r, h_idx, t_idx)]
correct_evidence += len(stdevi & evi)
in_train_annotated = in_train_distant = False
for n1 in vertexSet[h_idx]:
for n2 in vertexSet[t_idx]:
if (n1["name"], n2["name"], r) in fact_in_train_annotated:
in_train_annotated = True
if (n1["name"], n2["name"], r) in fact_in_train_distant:
in_train_distant = True
if in_train_annotated:
correct_in_train_annotated += 1
if in_train_distant:
correct_in_train_distant += 1
re_p = 1.0 * correct_re / len(submission_answer)
re_r = 1.0 * correct_re / tot_relations
if re_p + re_r == 0:
re_f1 = 0
else:
re_f1 = 2.0 * re_p * re_r / (re_p + re_r)
evi_p = 1.0 * correct_evidence / pred_evi if pred_evi > 0 else 0
evi_r = 1.0 * correct_evidence / tot_evidences
if evi_p + evi_r == 0:
evi_f1 = 0
else:
evi_f1 = 2.0 * evi_p * evi_r / (evi_p + evi_r)
re_p_ignore_train_annotated = (
1.0 * (correct_re - correct_in_train_annotated) / (len(submission_answer) - correct_in_train_annotated)
)
re_p_ignore_train = (
1.0 * (correct_re - correct_in_train_distant) / (len(submission_answer) - correct_in_train_distant)
)
if re_p_ignore_train_annotated + re_r == 0:
re_f1_ignore_train_annotated = 0
else:
re_f1_ignore_train_annotated = 2.0 * re_p_ignore_train_annotated * re_r / (re_p_ignore_train_annotated + re_r)
if re_p_ignore_train + re_r == 0:
re_f1_ignore_train = 0
else:
re_f1_ignore_train = 2.0 * re_p_ignore_train * re_r / (re_p_ignore_train + re_r)
print("RE_F1:", re_f1)
print("Evi_F1:", evi_f1)
print("RE_ignore_annotated_F1:", re_f1_ignore_train_annotated)
print("RE_ignore_distant_F1:", re_f1_ignore_train)
output_file.write("RE_F1: %f\n" % re_f1)
output_file.write("Evi_F1: %f\n" % evi_f1)
output_file.write("RE_ignore_annotated_F1: %f\n" % re_f1_ignore_train_annotated)
output_file.write("RE_ignore_distant_F1: %f\n" % re_f1_ignore_train)
output_file.close()