Spaces:
Running
Running
File size: 68,646 Bytes
eafbf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 |
"""Helpers for visualization"""
import os
import numpy as np
import matplotlib
import matplotlib.pyplot as plt
import cv2
import PIL
from PIL import Image, ImageOps, ImageDraw
from os.path import exists
import librosa.display
import pandas as pd
import itertools
import librosa
from tqdm import tqdm
from IPython.display import Audio, Markdown, display
from ipywidgets import Button, HBox, VBox, Text, Label, HTML, widgets
from shared.utils.log import tqdm_iterator
import warnings
warnings.filterwarnings("ignore")
try:
import torchvideotransforms
except:
print("Failed to import torchvideotransforms. Proceeding without.")
print("Please install using:")
print("pip install git+https://github.com/hassony2/torch_videovision")
# define predominanat colors
COLORS = {
"pink": (242, 116, 223),
"cyan": (46, 242, 203),
"red": (255, 0, 0),
"green": (0, 255, 0),
"blue": (0, 0, 255),
"yellow": (255, 255, 0),
}
def get_predominant_color(color_key, mode="RGB", alpha=0):
assert color_key in COLORS.keys(), f"Unknown color key: {color_key}"
if mode == "RGB":
return COLORS[color_key]
elif mode == "RGBA":
return COLORS[color_key] + (alpha,)
def show_single_image(image: np.ndarray, figsize: tuple = (8, 8), title: str = None, cmap: str = None, ticks=False):
"""Show a single image."""
fig, ax = plt.subplots(1, 1, figsize=figsize)
if isinstance(image, Image.Image):
image = np.asarray(image)
ax.set_title(title)
ax.imshow(image, cmap=cmap)
if not ticks:
ax.set_xticks([])
ax.set_yticks([])
plt.show()
def show_grid_of_images(
images: np.ndarray, n_cols: int = 4, figsize: tuple = (8, 8), subtitlesize=14,
cmap=None, subtitles=None, title=None, save=False, savepath="sample.png", titlesize=20,
ysuptitle=0.8, xlabels=None, sizealpha=0.7, show=True, row_labels=None, aspect=None,
):
"""Show a grid of images."""
n_cols = min(n_cols, len(images))
copy_of_images = images.copy()
for i, image in enumerate(copy_of_images):
if isinstance(image, Image.Image):
image = np.asarray(image)
copy_of_images[i] = image
if subtitles is None:
subtitles = [None] * len(images)
if xlabels is None:
xlabels = [None] * len(images)
if row_labels is None:
num_rows = int(np.ceil(len(images) / n_cols))
row_labels = [None] * num_rows
n_rows = int(np.ceil(len(images) / n_cols))
fig, axes = plt.subplots(n_rows, n_cols, figsize=figsize)
if len(images) == 1:
axes = np.array([[axes]])
for i, ax in enumerate(axes.flat):
if i < len(copy_of_images):
if len(copy_of_images[i].shape) == 2 and cmap is None:
cmap="gray"
ax.imshow(copy_of_images[i], cmap=cmap, aspect=aspect)
ax.set_title(subtitles[i], fontsize=subtitlesize)
ax.set_xlabel(xlabels[i], fontsize=sizealpha * subtitlesize)
ax.set_xticks([])
ax.set_yticks([])
col_idx = i % n_cols
if col_idx == 0:
ax.set_ylabel(row_labels[i // n_cols], fontsize=sizealpha * subtitlesize)
fig.tight_layout()
plt.suptitle(title, y=ysuptitle, fontsize=titlesize)
if save:
plt.savefig(savepath, bbox_inches='tight')
if show:
plt.show()
def add_text_to_image(image, text):
from PIL import ImageFont
from PIL import ImageDraw
# # resize image
# image = image.resize((image.size[0] * 2, image.size[1] * 2))
draw = ImageDraw.Draw(image)
font = ImageFont.load_default()
# font = ImageFont.load("arial.pil")
# font = ImageFont.FreeTypeFont(size=20)
# font = ImageFont.truetype("arial.ttf", 28, encoding="unic")
# change fontsize
# select color = black if image is mostly white
if np.mean(image) > 200:
draw.text((0, 0), text, (0,0,0), font=font)
else:
draw.text((0, 0), text, (255,255,255), font=font)
# draw.text((0, 0), text, (255,255,255), font=font)
return image
def show_keypoint_matches(
img1, kp1, img2, kp2, matches,
K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0)),
choose_matches="random",
):
"""Displays matches found in the pair of images"""
if choose_matches == "random":
selected_matches = np.random.choice(matches, K)
elif choose_matches == "all":
K = len(matches)
selected_matches = matches
elif choose_matches == "topk":
selected_matches = matches[:K]
else:
raise ValueError(f"Unknown value for choose_matches: {choose_matches}")
# color each match with a different color
cmap = matplotlib.cm.get_cmap('gist_rainbow', K)
colors = [[int(x*255) for x in cmap(i)[:3]] for i in np.arange(0,K)]
drawMatches_args.update({"matchColor": -1, "singlePointColor": (100, 100, 100)})
img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args)
show_single_image(
img3,
figsize=figsize,
title=f"[{choose_matches.upper()}] Selected K = {K} matches between the pair of images.",
)
return img3
def draw_kps_on_image(image: np.ndarray, kps: np.ndarray, color=COLORS["red"], radius=3, thickness=-1, return_as="PIL"):
"""
Draw keypoints on image.
Args:
image: Image to draw keypoints on.
kps: Keypoints to draw. Note these should be in (x, y) format.
"""
if isinstance(image, Image.Image):
image = np.asarray(image)
if isinstance(color, str):
color = PIL.ImageColor.getrgb(color)
colors = [color] * len(kps)
elif isinstance(color, tuple):
colors = [color] * len(kps)
elif isinstance(color, list):
colors = [PIL.ImageColor.getrgb(c) for c in color]
assert len(colors) == len(kps), f"Number of colors ({len(colors)}) must be equal to number of keypoints ({len(kps)})"
for kp, c in zip(kps, colors):
image = cv2.circle(
image.copy(), (int(kp[0]), int(kp[1])), radius=radius, color=c, thickness=thickness)
if return_as == "PIL":
return Image.fromarray(image)
return image
def get_concat_h(im1, im2):
"""Concatenate two images horizontally"""
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def get_concat_v(im1, im2):
"""Concatenate two images vertically"""
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
def show_images_with_keypoints(images: list, kps: list, radius=15, color=(0, 220, 220), figsize=(10, 8)):
assert len(images) == len(kps)
# generate
images_with_kps = []
for i in range(len(images)):
img_with_kps = draw_kps_on_image(images[i], kps[i], radius=radius, color=color, return_as="PIL")
images_with_kps.append(img_with_kps)
# show
show_grid_of_images(images_with_kps, n_cols=len(images), figsize=figsize)
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs):
try:
plt.rcParams.update({
"text.usetex": usetex,
"font.family": "serif",
# "font.serif": ["Computer Modern Romans"],
"font.size": fontsize,
**kwargs,
})
if show_sample:
plt.figure()
plt.title("Sample $y = x^2$")
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o")
plt.grid()
plt.show()
except:
print("Failed to setup LaTeX fonts. Proceeding without.")
pass
def plot_2d_points(
list_of_points_2d,
colors=None,
sizes=None,
markers=None,
alpha=0.75,
h=256,
w=256,
ax=None,
save=True,
savepath="test.png",
):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.set_xlim([0, w])
ax.set_ylim([0, h])
if sizes is None:
sizes = [0.1 for _ in range(len(list_of_points_2d))]
if colors is None:
colors = ["gray" for _ in range(len(list_of_points_2d))]
if markers is None:
markers = ["o" for _ in range(len(list_of_points_2d))]
for points_2d, color, s, m in zip(list_of_points_2d, colors, sizes, markers):
ax.scatter(points_2d[:, 0], points_2d[:, 1], s=s, alpha=alpha, color=color, marker=m)
if save:
plt.savefig(savepath, bbox_inches='tight')
def plot_2d_points_on_image(
image,
img_alpha=1.0,
ax=None,
list_of_points_2d=[],
scatter_args=dict(),
):
if ax is None:
fig, ax = plt.subplots(1, 1)
ax.imshow(image, alpha=img_alpha)
scatter_args["save"] = False
plot_2d_points(list_of_points_2d, ax=ax, **scatter_args)
# invert the axis
ax.set_ylim(ax.get_ylim()[::-1])
def compare_landmarks(
image, ground_truth_landmarks, v2d, predicted_landmarks,
save=False, savepath="compare_landmarks.png", num_kps_to_show=-1,
show_matches=True,
):
# show GT landmarks on image
fig, axes = plt.subplots(1, 3, figsize=(11, 4))
ax = axes[0]
plot_2d_points_on_image(
image,
list_of_points_2d=[ground_truth_landmarks],
scatter_args=dict(sizes=[15], colors=["limegreen"]),
ax=ax,
)
ax.set_title("GT landmarks", fontsize=12)
# since the projected points are inverted, using 180 degree rotation about z-axis
ax = axes[1]
plot_2d_points_on_image(
image,
list_of_points_2d=[v2d, predicted_landmarks],
scatter_args=dict(sizes=[0.08, 15], markers=["o", "x"], colors=["royalblue", "red"]),
ax=ax,
)
ax.set_title("Projection of predicted mesh", fontsize=12)
# plot the ground truth and predicted landmarks on the same image
ax = axes[2]
plot_2d_points_on_image(
image,
list_of_points_2d=[
ground_truth_landmarks[:num_kps_to_show],
predicted_landmarks[:num_kps_to_show],
],
scatter_args=dict(sizes=[15, 15], markers=["o", "x"], colors=["limegreen", "red"]),
ax=ax,
img_alpha=0.5,
)
ax.set_title("GT and predicted landmarks", fontsize=12)
if show_matches:
for i in range(num_kps_to_show):
x_values = [ground_truth_landmarks[i, 0], predicted_landmarks[i, 0]]
y_values = [ground_truth_landmarks[i, 1], predicted_landmarks[i, 1]]
ax.plot(x_values, y_values, color="yellow", markersize=1, linewidth=2.)
fig.tight_layout()
if save:
plt.savefig(savepath, bbox_inches="tight")
def plot_historgam_values(
X, display_vals=False,
bins=50, figsize=(8, 5),
show_mean=True,
xlabel=None, ylabel=None,
ax=None, title=None, show=False,
**kwargs,
):
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.hist(X, bins=bins, **kwargs)
if title is None:
title = "Histogram of values"
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
if display_vals:
x, counts = np.unique(X, return_counts=True)
# sort_indices = np.argsort(x)
# x = x[sort_indices]
# counts = counts[sort_indices]
# for i in range(len(x)):
# ax.text(x[i], counts[i], counts[i], ha='center', va='bottom')
ax.grid(alpha=0.3)
if show_mean:
mean = np.mean(X)
mean_string = f"$\mu$: {mean:.2f}"
ax.set_title(title + f" ({mean_string}) ")
else:
ax.set_title(title)
if not show:
return ax
else:
plt.show()
"""Helper functions for all kinds of 2D/3D visualization"""
def bokeh_2d_scatter(x, y, desc, figsize=(700, 700), colors=None, use_nb=False, title="Bokeh scatter plot"):
import matplotlib.colors as mcolors
from bokeh.plotting import figure, output_file, show, ColumnDataSource
from bokeh.models import HoverTool
from bokeh.io import output_notebook
if use_nb:
output_notebook()
# define colors to be assigned
if colors is None:
# applies the same color
# create a color iterator: pick a random color and apply it to all points
# colors = [np.random.choice(itertools.cycle(palette))] * len(x)
colors = [np.random.choice(["red", "green", "blue", "yellow", "pink", "black", "gray"])] * len(x)
# # applies different colors
# colors = np.array([ [r, g, 150] for r, g in zip(50 + 2*x, 30 + 2*y) ], dtype="uint8")
# define the df of data to plot
source = ColumnDataSource(
data=dict(
x=x,
y=y,
desc=desc,
color=colors,
)
)
# define the attributes to show on hover
hover = HoverTool(
tooltips=[
("index", "$index"),
("(x, y)", "($x, $y)"),
("Desc", "@desc"),
]
)
p = figure(
plot_width=figsize[0], plot_height=figsize[1], tools=[hover], title=title,
)
p.circle('x', 'y', size=10, source=source, fill_color="color")
show(p)
def bokeh_2d_scatter_new(
df, x, y, hue, label, color_column=None, size_col=None,
figsize=(700, 700), use_nb=False, title="Bokeh scatter plot",
legend_loc="bottom_left", edge_color="black", audio_col=None,
):
from bokeh.plotting import figure, output_file, show, ColumnDataSource
from bokeh.models import HoverTool
from bokeh.io import output_notebook
if use_nb:
output_notebook()
assert {x, y, hue, label}.issubset(set(df.keys()))
if isinstance(color_column, str) and color_column in df.keys():
color_column_name = color_column
else:
import matplotlib.colors as mcolors
colors = list(mcolors.BASE_COLORS.keys()) + list(mcolors.TABLEAU_COLORS.values())
# colors = list(mcolors.BASE_COLORS.keys())
colors = itertools.cycle(np.unique(colors))
hue_to_color = dict()
unique_hues = np.unique(df[hue].values)
for _hue in unique_hues:
hue_to_color[_hue] = next(colors)
df["color"] = df[hue].apply(lambda k: hue_to_color[k])
color_column_name = "color"
if size_col is not None:
assert isinstance(size_col, str) and size_col in df.keys()
else:
sizes = [10.] * len(df)
df["size"] = sizes
size_col = "size"
source = ColumnDataSource(
dict(
x = df[x].values,
y = df[y].values,
hue = df[hue].values,
label = df[label].values,
color = df[color_column_name].values,
edge_color = [edge_color] * len(df),
sizes = df[size_col].values,
)
)
# define the attributes to show on hover
hover = HoverTool(
tooltips=[
("index", "$index"),
("(x, y)", "($x, $y)"),
("Desc", "@label"),
("Cluster", "@hue"),
]
)
p = figure(
plot_width=figsize[0],
plot_height=figsize[1],
tools=["pan","wheel_zoom","box_zoom","save","reset","help"] + [hover],
title=title,
)
p.circle(
'x', 'y', size="sizes",
source=source, fill_color="color",
legend_group="hue", line_color="edge_color",
)
p.legend.location = legend_loc
p.legend.click_policy="hide"
show(p)
import torch
def get_sentence_embedding(model, tokenizer, sentence):
encoded = tokenizer.encode_plus(sentence, return_tensors="pt")
with torch.no_grad():
output = model(**encoded)
last_hidden_state = output.last_hidden_state
assert last_hidden_state.shape[0] == 1
assert last_hidden_state.shape[-1] == 768
# only pick the [CLS] token embedding (sentence embedding)
sentence_embedding = last_hidden_state[0, 0]
return sentence_embedding
def lighten_color(color, amount=0.5):
"""
Lightens the given color by multiplying (1-luminosity) by the given amount.
Input can be matplotlib color string, hex string, or RGB tuple.
Examples:
>> lighten_color('g', 0.3)
>> lighten_color('#F034A3', 0.6)
>> lighten_color((.3,.55,.1), 0.5)
"""
import matplotlib.colors as mc
import colorsys
try:
c = mc.cnames[color]
except:
c = color
c = colorsys.rgb_to_hls(*mc.to_rgb(c))
return colorsys.hls_to_rgb(c[0], 1 - amount * (1 - c[1]), c[2])
def plot_histogram(df, col, ax=None, color="blue", title=None, xlabel=None, **kwargs):
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=(5, 4))
ax.grid(alpha=0.3)
xlabel = col if xlabel is None else xlabel
ax.set_xlabel(xlabel)
ax.set_ylabel("Frequency")
title = f"Historgam of {col}" if title is None else title
ax.set_title(title)
label = f"Mean: {np.round(df[col].mean(), 1)}"
ax.hist(df[col].values, density=False, color=color, edgecolor=lighten_color(color, 0.1), label=label, **kwargs)
if "bins" in kwargs:
xticks = list(np.arange(kwargs["bins"])[::5])
xticks += list(np.linspace(xticks[-1], int(df[col].max()), 5, dtype=int))
# print(xticks)
ax.set_xticks(xticks)
ax.legend()
plt.show()
def beautify_ax(ax, title=None, titlesize=20, sizealpha=0.7, xlabel=None, ylabel=None):
labelsize = sizealpha * titlesize
ax.grid(alpha=0.3)
ax.set_xlabel(xlabel, fontsize=labelsize)
ax.set_ylabel(ylabel, fontsize=labelsize)
ax.set_title(title, fontsize=titlesize)
def get_text_features(text: list, model, device, batch_size=16):
import clip
text_batches = [text[i:i+batch_size] for i in range(0, len(text), batch_size)]
text_features = []
model = model.to(device)
model = model.eval()
for batch in tqdm(text_batches, desc="Getting text features", bar_format="{l_bar}{bar:20}{r_bar}"):
batch = clip.tokenize(batch).to(device)
with torch.no_grad():
batch_features = model.encode_text(batch)
text_features.append(batch_features.cpu().numpy())
text_features = np.concatenate(text_features, axis=0)
return text_features
from sklearn.manifold import TSNE
def reduce_dim(X, perplexity=30, n_iter=1000):
tsne = TSNE(
n_components=2,
perplexity=perplexity,
n_iter=n_iter,
init='pca',
# learning_rate="auto",
)
Z = tsne.fit_transform(X)
return Z
from IPython.display import Video
def show_video(video_path):
"""Show a video in a Jupyter notebook"""
assert exists(video_path), f"Video path {video_path} does not exist"
# display the video in a Jupyter notebook
return Video(video_path, embed=True, width=480)
# Video(video_path, embed=True, width=600, height=400)
# html_attributes="controls autoplay loop muted"
def show_single_audio(filepath=None, data=None, rate=None, start=None, end=None, label="Sample audio"):
if filepath is None:
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
args = dict(data=data, rate=rate)
else:
assert data is None and rate is None, "Either filepath or data and rate must be provided"
data, rate = librosa.load(filepath)
# args = dict(filename=filepath)
args = dict(data=data, rate=rate)
if start is not None and end is not None:
start = max(int(start * rate), 0)
end = min(int(end * rate), len(data))
else:
start = 0
end = len(data)
data = data[start:end]
args["data"] = data
if label is None:
label = "Sample audio"
label = Label(f"{label}")
out = widgets.Output()
with out:
display(Audio(**args))
vbox = VBox([label, out])
return vbox
def show_single_audio_with_spectrogram(filepath=None, data=None, rate=None, label="Sample audio", figsize=(6, 2)):
if filepath is None:
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
else:
data, rate = librosa.load(filepath)
# Show audio
vbox = show_single_audio(data=data, rate=rate, label=label)
# get width of audio widget
width = vbox.children[1].layout.width
# Show spectrogram
spec_out = widgets.Output()
D = librosa.stft(data) # STFT of y
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
with spec_out:
fig, ax = plt.subplots(figsize=figsize)
img = librosa.display.specshow(
S_db,
ax=ax,
x_axis='time',
# y_axis='linear',
)
# img = widgets.Image.from_file(fig)
# import ipdb; ipdb.set_trace()
# img = widgets.Image(img)
# add image to vbox
vbox.children += (spec_out,)
return vbox
def show_spectrogram(audio_path=None, data=None, rate=None, figsize=(6, 2), ax=None, show=True):
if data is None and rate is None:
# Show spectrogram
data, rate = librosa.load(audio_path)
else:
assert audio_path is None, "Either audio_path or data and rate must be provided"
hop_length = 512
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
# Create spectrogram plot widget
if ax is None:
fig, ax = plt.subplots(1, 1, figsize=figsize)
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno')
# Replace xtixks with time
xticks = ax.get_xticks()
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length)
ax.set_xticklabels(np.round(time_in_seconds, 1))
ax.set_xlabel('Time')
ax.set_yticks([])
if ax is None:
plt.close(fig)
# Create widget output
spec_out = widgets.Output()
with spec_out:
display(fig)
return spec_out
def show_single_video_and_spectrogram(
video_path, audio_path,
label="Sample video", figsize=(6, 2),
width=480,
show_spec_stats=False,
):
# Show video
vbox = show_single_video(video_path, label=label, width=width)
# get width of video widget
width = vbox.children[1].layout.width
# Show spectrogram
data, rate = librosa.load(audio_path)
hop_length = 512
D = librosa.stft(data, n_fft=2048, hop_length=hop_length, win_length=2048) # STFT of y
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
# Create spectrogram plot widget
fig, ax = plt.subplots(1, 1, figsize=figsize)
im = ax.imshow(S_db, origin='lower', aspect='auto', cmap='inferno')
# Replace xtixks with time
xticks = ax.get_xticks()
time_in_seconds = librosa.frames_to_time(xticks, sr=rate, hop_length=hop_length)
ax.set_xticklabels(np.round(time_in_seconds, 1))
ax.set_xlabel('Time')
ax.set_yticks([])
plt.close(fig)
# Create widget output
spec_out = widgets.Output()
with spec_out:
display(fig)
vbox.children += (spec_out,)
if show_spec_stats:
# Compute mean of spectrogram over frequency axis
eps = 1e-5
S_db_normalized = (S_db - S_db.mean(axis=1)[:, None]) / (S_db.std(axis=1)[:, None] + eps)
S_db_over_time = S_db_normalized.sum(axis=0)
# Plot S_db_over_time
fig, ax = plt.subplots(1, 1, figsize=(6, 2))
# ax.set_title("Spectrogram over time")
ax.grid(alpha=0.5)
x = np.arange(len(S_db_over_time))
x = librosa.frames_to_time(x, sr=rate, hop_length=hop_length)
x = np.round(x, 1)
ax.plot(x, S_db_over_time)
ax.set_xlabel('Time')
ax.set_yticks([])
plt.close(fig)
plot_out = widgets.Output()
with plot_out:
display(fig)
vbox.children += (plot_out,)
return vbox
def show_single_spectrogram(
filepath=None,
data=None,
rate=None,
start=None,
end=None,
ax=None,
label="Sample spectrogram",
figsize=(6, 2),
xlabel="Time",
):
if filepath is None:
assert data is not None and rate is not None, "Either filepath or data and rate must be provided"
else:
rate = 22050
offset = start or 0
clip_duration = end - start if end is not None else None
data, rate = librosa.load(filepath, sr=rate, offset=offset, duration=clip_duration)
# start = 0 if start is None else int(rate * start)
# end = len(data) if end is None else int(rate * end)
# data = data[start:end]
# Show spectrogram
spec_out = widgets.Output()
D = librosa.stft(data) # STFT of y
S_db = librosa.amplitude_to_db(np.abs(D), ref=np.max)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
with spec_out:
img = librosa.display.specshow(
S_db,
ax=ax,
x_axis='time',
sr=rate,
# y_axis='linear',
)
ax.set_xlabel(xlabel)
ax.margins(x=0)
plt.subplots_adjust(wspace=0, hspace=0)
# img = widgets.Image.from_file(fig)
# import ipdb; ipdb.set_trace()
# img = widgets.Image(img)
# add image to vbox
vbox = VBox([spec_out])
return vbox
# return spec_out
# from decord import VideoReader
def show_single_video(filepath, label="Sample video", width=480, fix_resolution=True):
if label is None:
label = "Sample video"
height = None
if fix_resolution:
aspect_ratio = 16. / 9.
height = int(width * (1/ aspect_ratio))
label = Label(f"{label}")
out = widgets.Output()
with out:
display(Video(filepath, embed=True, width=width, height=height))
vbox = VBox([label, out])
return vbox
def show_grid_of_audio(files, starts=None, ends=None, labels=None, ncols=None, show_spec=False):
for f in files:
assert os.path.exists(f), f"File {f} does not exist."
if labels is None:
labels = [None] * len(files)
if starts is None:
starts = [None] * len(files)
if ends is None:
ends = [None] * len(files)
assert len(files) == len(labels)
if ncols is None:
ncols = 3
nfiles = len(files)
nrows = nfiles // ncols + (nfiles % ncols != 0)
# print(nrows, ncols)
for i in range(nrows):
row_hbox = []
for j in range(ncols):
idx = i * ncols + j
# print(i, j, idx)
if idx < len(files):
file, label = files[idx], labels[idx]
start, end = starts[idx], ends[idx]
vbox = show_single_audio(
filepath=file, label=label, start=start, end=end
)
if show_spec:
spec_box = show_spectrogram(file, figsize=(3.6, 1))
# Add spectrogram to vbox
vbox.children += (spec_box,)
# if not show_spec:
# vbox = show_single_audio(
# filepath=file, label=label, start=start, end=end
# )
# else:
# vbox = show_single_audio_with_spectrogram(
# filepath=file, label=label
# )
row_hbox.append(vbox)
row_hbox = HBox(row_hbox)
display(row_hbox)
def show_grid_of_videos(
files,
cut=False,
starts=None,
ends=None,
labels=None,
ncols=None,
width_overflow=False,
show_spec=False,
width_of_screen=1000,
):
from moviepy.editor import VideoFileClip
for f in files:
assert os.path.exists(f), f"File {f} does not exist."
if labels is None:
labels = [None] * len(files)
if starts is not None and ends is not None:
cut = True
if starts is None:
starts = [None] * len(files)
if ends is None:
ends = [None] * len(files)
assert len(files) == len(labels) == len(starts) == len(ends)
# cut the videos to the specified duration
if cut:
cut_files = []
for i, f in enumerate(files):
start, end = starts[i], ends[i]
tmp_f = os.path.join(os.path.expanduser("~"), f"tmp/clip_{i}.mp4")
cut_files.append(tmp_f)
video = VideoFileClip(f)
start = 0 if start is None else start
end = video.duration-1 if end is None else end
# print(start, end)
video.subclip(start, end).write_videofile(tmp_f, logger=None, verbose=False)
files = cut_files
if ncols is None:
ncols = 3
width_of_screen = 1000
# get width of the whole display screen
if not width_overflow:
width_of_single_video = width_of_screen // ncols
else:
width_of_single_video = 280
nfiles = len(files)
nrows = nfiles // ncols + (nfiles % ncols != 0)
# print(nrows, ncols)
for i in range(nrows):
row_hbox = []
for j in range(ncols):
idx = i * ncols + j
# print(i, j, idx)
if idx < len(files):
file, label = files[idx], labels[idx]
if not show_spec:
vbox = show_single_video(file, label, width_of_single_video)
else:
vbox = show_single_video_and_spectrogram(file, file, width=width_of_single_video, label=label)
row_hbox.append(vbox)
row_hbox = HBox(row_hbox)
display(row_hbox)
def preview_video(fp, label="Sample video frames", mode="uniform", frames_to_show=6):
from decord import VideoReader
assert exists(fp), f"Video does not exist at {fp}"
vr = VideoReader(fp)
nfs = len(vr)
fps = vr.get_avg_fps()
dur = nfs / fps
if mode == "all":
frame_indices = np.arange(nfs)
elif mode == "uniform":
frame_indices = np.linspace(0, nfs - 1, frames_to_show, dtype=int)
elif mode == "random":
frame_indices = np.random.randint(0, nfs - 1, replace=False)
frame_indices = sorted(frame_indices)
else:
raise ValueError(f"Unknown frame viewing mode {mode}.")
# Show grid of image
images = vr.get_batch(frame_indices).asnumpy()
show_grid_of_images(images, n_cols=len(frame_indices), title=label, figsize=(12, 2.3), titlesize=10)
def preview_multiple_videos(fps, labels, mode="uniform", frames_to_show=6):
for fp in fps:
assert exists(fp), f"Video does not exist at {fp}"
for fp, label in zip(fps, labels):
preview_video(fp, label, mode=mode, frames_to_show=frames_to_show)
def show_small_clips_in_a_video(
video_path,
clip_segments: list,
width=360,
labels=None,
show_spec=False,
resize=False,
):
from moviepy.editor import VideoFileClip
from ipywidgets import Layout
video = VideoFileClip(video_path)
if resize:
# Resize the video
print("Resizing the video to width", width)
video = video.resize(width=width)
if labels is None:
labels = [
f"Clip {i+1} [{clip_segments[i][0]} : {clip_segments[i][1]}]" for i in range(len(clip_segments))
]
else:
assert len(labels) == len(clip_segments)
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp")
tmp_clippaths = [f"{tmp_dir}/clip_{i}.mp4" for i in range(len(clip_segments))]
iterator = tqdm_iterator(zip(clip_segments, tmp_clippaths), total=len(clip_segments), desc="Preparing clips")
clips = [
video.subclip(x, y).write_videofile(f, logger=None, verbose=False) \
for (x, y), f in iterator
]
# show_grid_of_videos(tmp_clippaths, labels, ncols=len(clips), width_overflow=True)
hbox = []
for i in range(len(clips)):
# vbox = show_single_video(tmp_clippaths[i], labels[i], width=280)
vbox = widgets.Output()
with vbox:
if show_spec:
display(
show_single_video_and_spectrogram(
tmp_clippaths[i], tmp_clippaths[i],
width=width, figsize=(4.4, 1.5),
)
)
else:
display(Video(tmp_clippaths[i], embed=True, width=width))
# reduce vspace between video and label
display(Label(labels[i], layout=Layout(margin="-8px 0px 0px 0px")))
# if show_spec:
# display(show_single_spectrogram(tmp_clippaths[i], figsize=(4.5, 1.5)))
hbox.append(vbox)
hbox = HBox(hbox)
display(hbox)
def show_single_video_and_audio(
video_path, audio_path, label="Sample video and audio",
start=None, end=None, width=360, sr=44100, show=True,
):
from moviepy.editor import VideoFileClip
# Load video
video = VideoFileClip(video_path)
video_args = {"embed": True, "width": width}
filepath = video_path
# Load audio
audio_waveform, sr = librosa.load(audio_path, sr=sr)
audio_args = {"data": audio_waveform, "rate": sr}
if start is not None and end is not None:
# Cut video from start to end
tmp_dir = os.path.join(os.path.expanduser("~"), "tmp")
clip_path = os.path.join(tmp_dir, "clip_sample.mp4")
video.subclip(start, end).write_videofile(clip_path, logger=None, verbose=False)
filepath = clip_path
# Cut audio from start to end
audio_waveform = audio_waveform[int(start * sr): int(end * sr)]
audio_args["data"] = audio_waveform
out = widgets.Output()
with out:
label = f"{label} [{start} : {end}]"
display(Label(label))
display(Video(filepath, **video_args))
display(Audio(**audio_args))
if show:
display(out)
else:
return out
def plot_waveform(waveform, sample_rate, figsize=(10, 2), ax=None, skip=100, show=True, title=None):
if isinstance(waveform, torch.Tensor):
waveform = waveform.numpy()
time_axis = torch.arange(0, len(waveform)) / sample_rate
waveform = waveform[::skip]
time_axis = time_axis[::skip]
if len(waveform.shape) == 1:
num_channels = 1
num_frames = waveform.shape[0]
waveform = waveform.reshape(1, num_frames)
elif len(waveform.shape) == 2:
num_channels, num_frames = waveform.shape
else:
raise ValueError(f"Waveform has invalid shape {waveform.shape}")
if ax is None:
figure, axes = plt.subplots(num_channels, 1, figsize=figsize)
if num_channels == 1:
axes = [axes]
for c in range(num_channels):
axes[c].plot(time_axis, waveform[c], linewidth=1)
axes[c].grid(True)
if num_channels > 1:
axes[c].set_ylabel(f"Channel {c+1}")
figure.suptitle(title)
else:
assert num_channels == 1
ax.plot(time_axis, waveform[0], linewidth=1)
ax.grid(True)
# ax.set_xticks([])
# ax.set_yticks([])
# ax.set_xlim(-0.1, 0.1)
ax.set_ylim(-0.05, 0.05)
if show:
plt.show(block=False)
def show_waveform_as_image(waveform, sr=16000):
"""Plots a waveform as plt fig and converts into PIL.Image"""
fig, ax = plt.subplots(figsize=(10, 2))
plot_waveform(waveform, sr, ax=ax, show=False)
fig.canvas.draw()
img = Image.frombytes('RGB', fig.canvas.get_width_height(), fig.canvas.tostring_rgb())
plt.close(fig)
return img
def plot_raw_audio_signal_with_markings(signal: np.ndarray, markings: list,
title: str = 'Raw audio signal with markings',
figsize: tuple = (23, 4),
):
plt.figure(figsize=figsize)
plt.grid()
plt.plot(signal)
for value in markings:
plt.axvline(x=value, c='red')
plt.xlabel('Time')
plt.title(title)
plt.show()
plt.close()
def get_concat_h(im1, im2):
"""Concatenate two images horizontally"""
dst = Image.new('RGB', (im1.width + im2.width, im1.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (im1.width, 0))
return dst
def concat_images(images):
im1 = images[0]
canvas_height = max([im.height for im in images])
dst = Image.new('RGB', (sum([im.width for im in images]), im1.height))
start_width = 0
for i, im in enumerate(images):
if im.height < canvas_height:
start_height = (canvas_height - im.height) // 2
else:
start_height = 0
print(i, start_height)
dst.paste(im, (start_width, start_height))
start_width += im.width
return dst
def concat_images_with_border(images, border_width=5, border_color="white"):
im1 = images[0]
total_width = sum([im.width for im in images]) + (len(images) - 1) * border_width
max_height = max([im.height for im in images])
dst = Image.new(
'RGB',
(total_width, max_height),
border_color,
)
start_width = 0
uniform_height = im1.height
canvas_height = max([im.height for im in images])
for i, im in enumerate(images):
# if im.height != uniform_height:
# im = resize_height(im.copy(), uniform_height)
if im.height < canvas_height:
start_height = (canvas_height - im.height) // 2
# Pad with zeros at top and bottom
im = ImageOps.expand(
im, border=(0, start_height, 0, canvas_height - im.height - start_height),
)
start_height = 0
else:
start_height = 0
dst.paste(im, (start_width, start_height))
start_width += im.width + border_width
return dst
def concat_images_vertically(images):
im1 = images[0]
dst = Image.new('RGB', (im1.width, sum([im.height for im in images])))
start_height = 0
for i, im in enumerate(images):
dst.paste(im, (0, start_height))
start_height += im.height
return dst
def concat_images_vertically_with_border(images, border_width=5, border_color="white"):
im1 = images[0]
dst = Image.new('RGB', (im1.width, sum([im.height for im in images]) + (len(images) - 1) * border_width), border_color)
start_height = 0
for i, im in enumerate(images):
dst.paste(im, (0, start_height))
start_height += im.height + border_width
return dst
def get_concat_v(im1, im2):
"""Concatenate two images vertically"""
dst = Image.new('RGB', (im1.width, im1.height + im2.height))
dst.paste(im1, (0, 0))
dst.paste(im2, (0, im1.height))
return dst
def set_latex_fonts(usetex=True, fontsize=14, show_sample=False, **kwargs):
try:
plt.rcParams.update({
"text.usetex": usetex,
"font.family": "serif",
"font.serif": ["Computer Modern Roman"],
"font.size": fontsize,
**kwargs,
})
if show_sample:
plt.figure()
plt.title("Sample $y = x^2$")
plt.plot(np.arange(0, 10), np.arange(0, 10)**2, "--o")
plt.grid()
plt.show()
except:
print("Failed to setup LaTeX fonts. Proceeding without.")
pass
def get_colors(num_colors, palette="jet"):
cmap = plt.get_cmap(palette)
colors = [cmap(i) for i in np.linspace(0, 1, num_colors)]
return colors
def add_box_on_image(image, bbox, color="red", thickness=3, resized=False, fillcolor=None, fillalpha=0.2):
"""
Adds bounding box on image.
Args:
image (PIL.Image): image
bbox (list): [xmin, ymin, xmax, ymax]
color: -
thickness: -
"""
image = image.copy().convert("RGB")
# color = get_predominant_color(color)
color = PIL.ImageColor.getrgb(color)
# Apply alpha to fillcolor
if fillcolor is not None:
if isinstance(fillcolor, str):
fillcolor = PIL.ImageColor.getrgb(fillcolor)
fillcolor= fillcolor + (int(fillalpha * 255),)
elif isinstance(fillcolor, tuple):
if len(fillcolor) == 3:
fillcolor= fillcolor + (int(fillalpha * 255),)
else:
pass
# Create an instance of the ImageDraw class
draw = ImageDraw.Draw(image, "RGBA")
# Draw the bounding box on the image
draw.rectangle(bbox, outline=color, width=thickness, fill=fillcolor)
# Resize
new_width, new_height = (320, 240)
if resized:
image = image.resize((new_width, new_height))
return image
def add_multiple_boxes_on_image(image, bboxes, colors=None, thickness=3, resized=False, fillcolor=None, fillalpha=0.2):
image = image.copy().convert("RGB")
if colors is None:
colors = ["red"] * len(bboxes)
for bbox, color in zip(bboxes, colors):
image = add_box_on_image(image, bbox, color, thickness, resized, fillcolor, fillalpha)
return image
def colorize_mask(mask, color="red"):
# mask = mask.convert("RGBA")
color = PIL.ImageColor.getrgb(color)
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color)
return mask
def add_mask_on_image(image: Image, mask: Image, color="green", alpha=0.5):
image = image.copy()
mask = mask.copy()
# get color if it is a string
if isinstance(color, str):
color = PIL.ImageColor.getrgb(color)
# color = get_predominant_color(color)
mask = ImageOps.colorize(mask, (0, 0, 0, 0), color)
mask = mask.convert("RGB")
assert (mask.size == image.size)
assert (mask.mode == image.mode)
# Blend the original image and the segmentation mask with a 50% weight
blended_image = Image.blend(image, mask, alpha)
return blended_image
def blend_images(img1, img2, alpha=0.5):
# Convert images to RGBA
img1 = img1.convert("RGBA")
img2 = img2.convert("RGBA")
alpha_blended = Image.blend(img1, img2, alpha=alpha)
# Convert back to RGB
alpha_blended = alpha_blended.convert("RGB")
return alpha_blended
def visualize_youtube_clip(
youtube_id, st, et, label="",
show_spec=False,
video_width=360, video_height=240,
):
url = f"https://www.youtube.com/embed/{youtube_id}?start={int(st)}&end={int(et)}"
video_html_code = f"""
<iframe height="{video_height}" width="{video_width}" src="{url}" frameborder="0" allowfullscreen></iframe>
"""
label_html_code = f"""<b>Caption</b>: {label} <br> <b>Time</b>: {st} to {et}"""
# Show label and video below it
label = widgets.HTML(label_html_code)
video = widgets.HTML(video_html_code)
if show_spec:
import pytube
import base64
from io import BytesIO
from moviepy.video.io.VideoFileClip import VideoFileClip
from moviepy.audio.io.AudioFileClip import AudioFileClip
# Load audio directly from youtube
video_url = f"https://www.youtube.com/watch?v={youtube_id}"
yt = pytube.YouTube(video_url)
# Get the audio stream
audio_stream = yt.streams.filter(only_audio=True).first()
# Download audio stream
# audio_file = os.path.join("/tmp", "sample_audio.mp3")
audio_stream.download(output_path='/tmp', filename='sample.mp4')
audio_clip = AudioFileClip("/tmp/sample.mp4")
audio_subclip = audio_clip.subclip(st, et)
sr = audio_subclip.fps
y = audio_subclip.to_soundarray().mean(axis=1)
audio_subclip.close()
audio_clip.close()
# Compute spectrogram in librosa
S_db = librosa.power_to_db(librosa.feature.melspectrogram(y, sr=sr), ref=np.max)
# Compute width in cms from video_width
width = video_width / plt.rcParams["figure.dpi"] + 0.63
height = video_height / plt.rcParams["figure.dpi"]
out = widgets.Output()
with out:
fig, ax = plt.subplots(figsize=(width, height))
librosa.display.specshow(S_db, sr=sr, x_axis='time', ax=ax)
ax.set_ylabel("Frequency (Hz)")
else:
out = widgets.Output()
vbox = widgets.VBox([label, video, out])
return vbox
def visualize_pair_of_youtube_clips(clip_a, clip_b):
yt_id_a = clip_a["youtube_id"]
label_a = clip_a["sentence"]
st_a, et_a = clip_a["time"]
yt_id_b = clip_b["youtube_id"]
label_b = clip_b["sentence"]
st_b, et_b = clip_b["time"]
# Show the clips side by side
clip_a = visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True)
# clip_a = widgets.Output()
# with clip_a:
# visualize_youtube_clip(yt_id_a, st_a, et_a, label_a, show_spec=True)
clip_b = visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True)
# clip_b = widgets.Output()
# with clip_b:
# visualize_youtube_clip(yt_id_b, st_b, et_b, label_b, show_spec=True)
hbox = HBox([
clip_a, clip_b
])
display(hbox)
def plot_1d(x: np.ndarray, figsize=(6, 2), title=None, xlabel=None, ylabel=None, show=True, **kwargs):
assert (x.ndim == 1)
fig, ax = plt.subplots(figsize=figsize)
ax.grid(alpha=0.3)
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
ax.plot(np.arange(len(x)), x, **kwargs)
if show:
plt.show()
else:
plt.close()
return fig
def make_grid(cols,rows):
import streamlit as st
grid = [0]*cols
for i in range(cols):
with st.container():
grid[i] = st.columns(rows)
return grid
def display_clip(video_path, stime, etime, label=None):
"""Displays clip at index i."""
assert exists(video_path), f"Video does not exist at {video_path}"
display(
show_small_clips_in_a_video(
video_path, [(stime, etime)], labels=[label],
),
)
def countplot(df, column, title=None, rotation=90, ylabel="Count", figsize=(8, 5), ax=None, show=True, show_counts=False):
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
ax.grid(alpha=0.4)
ax.set_xlabel(column)
ax.set_ylabel(ylabel)
ax.set_title(title)
data = dict(df[column].value_counts())
# Extract keys and values from the dictionary
categories = list(data.keys())
counts = list(data.values())
# Create a countplot
ax.bar(categories, counts)
ax.set_xticklabels(categories, rotation=rotation)
# Show count values on top of bars
if show_counts:
max_v = max(counts)
for i, v in enumerate(counts):
delta = 0.01 * max_v
ax.text(i, v + delta, str(v), ha="center")
if show:
plt.show()
def get_linspace_colors(cmap_name='viridis', num_colors = 10):
import matplotlib.colors as mcolors
# Get the colormap object
cmap = plt.cm.get_cmap(cmap_name)
# Get the evenly spaced indices
indices = np.arange(0, 1, 1./num_colors)
# Get the corresponding colors from the colormap
colors = [mcolors.to_hex(cmap(idx)) for idx in indices]
return colors
def hex_to_rgb(colors):
from PIL import ImageColor
return [ImageColor.getcolor(c, "RGB") for c in colors]
def plot_audio_feature(times, feature, feature_label="Feature", xlabel="Time", figsize=(20, 2)):
fig, ax = plt.subplots(1, 1, figsize=figsize)
ax.grid(alpha=0.4)
ax.set_xlabel(xlabel)
ax.set_ylabel(feature_label)
ax.set_yticks([])
ax.plot(times, feature, '--', linewidth=0.5)
plt.show()
def compute_rms(y, frame_length=512):
rms = librosa.feature.rms(y=y, frame_length=frame_length)[0]
times = librosa.samples_to_time(frame_length * np.arange(len(rms)))
return times, rms
def plot_audio_features(path, label, show=True, show_video=True, features=["rms"], frame_length=512, figsize=(5, 2), return_features=False):
# Load audio
y, sr = librosa.load(path)
# Show video
if show_video:
if show:
display(
show_single_video_and_spectrogram(
path, path, label=label, figsize=figsize,
width=410,
)
)
else:
if show:
# Show audio and spectrogram
display(
show_single_audio_with_spectrogram(path, label=label, figsize=figsize)
)
feature_data = dict()
for f in features:
fn = eval(f"compute_{f}")
args = dict(y=y, frame_length=frame_length)
xvals, yvals = fn(**args)
feature_data[f] = (xvals, yvals)
if show:
display(
plot_audio_feature(
xvals, yvals, feature_label=f.upper(), figsize=(figsize[0] - 0.25, figsize[1]),
)
)
if return_features:
return feature_data
def rescale_frame(frame, scale=1.):
"""Rescales a frame by a factor of scale."""
return frame.resize((int(frame.width * scale), int(frame.height * scale)))
def save_gif(images, path, duration=None, fps=30):
import imageio
images = [np.asarray(image) for image in images]
if fps is not None:
imageio.mimsave(path, images, fps=fps)
else:
assert duration is not None
imageio.mimsave(path, images, duration=duration)
def show_subsampled_frames(frames, n_show, figsize=(15, 3), as_canvas=True):
indices = np.arange(len(frames))
indices = np.linspace(0, len(frames) - 1, n_show, dtype=int)
show_frames = [frames[i] for i in indices]
if as_canvas:
return concat_images(show_frames)
else:
show_grid_of_images(show_frames, n_cols=n_show, figsize=figsize, subtitles=indices)
def tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False):
import PIL
if isinstance(x, torch.Tensor):
x = x.numpy()
if scale:
x = (x - x.min()) / (x.max() - x.min())
cm = plt.get_cmap(cmap)
if flip_vertically:
x = np.flip(x, axis=0) # put low frequencies at the bottom in image
x = cm(x)
x = (x * 255).astype(np.uint8)
if x.shape[-1] == 3:
x = PIL.Image.fromarray(x, mode="RGB")
elif x.shape[-1] == 4:
x = PIL.Image.fromarray(x, mode="RGBA").convert("RGB")
else:
raise ValueError(f"Invalid shape {x.shape}")
return x
def batch_tensor_to_heatmap(x, scale=True, cmap="viridis", flip_vertically=False, resize=None):
y = []
for i in range(len(x)):
h = tensor_to_heatmap(x[i], scale, cmap, flip_vertically)
if resize is not None:
h = h.resize(resize)
y.append(h)
return y
def change_contrast(img, level):
factor = (259 * (level + 255)) / (255 * (259 - level))
def contrast(c):
return 128 + factor * (c - 128)
return img.point(contrast)
def change_brightness(img, alpha):
import PIL
enhancer = PIL.ImageEnhance.Brightness(img)
# to reduce brightness by 50%, use factor 0.5
img = enhancer.enhance(alpha)
return img
def draw_horizontal_lines(image, y_values, color=(255, 0, 0), colors=None, line_thickness=2):
"""
Draw horizontal lines on a PIL image at specified Y positions.
Args:
image (PIL.Image.Image): The input PIL image.
y_values (list or int): List of Y positions where lines will be drawn.
If a single integer is provided, a line will be drawn at that Y position.
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red).
line_thickness (int): Thickness of the lines.
Returns:
PIL.Image.Image: The PIL image with the drawn lines.
"""
image = image.copy()
if isinstance(color, str):
color = PIL.ImageColor.getcolor(color, "RGB")
if colors is None:
colors = [color] * len(y_values)
else:
if isinstance(colors[0], str):
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors]
if isinstance(y_values, int):
y_values = [y_values]
# Create a drawing context on the image
draw = PIL.ImageDraw.Draw(image)
if isinstance(y_values, int):
y_values = [y_values]
for y, c in zip(y_values, colors):
draw.line([(0, y), (image.width, y)], fill=c, width=line_thickness)
return image
def draw_vertical_lines(image, x_values, color=(255, 0, 0), colors=None, line_thickness=2):
"""
Draw vertical lines on a PIL image at specified X positions.
Args:
image (PIL.Image.Image): The input PIL image.
x_values (list or int): List of X positions where lines will be drawn.
If a single integer is provided, a line will be drawn at that X position.
color (tuple): RGB color tuple (e.g., (255, 0, 0) for red).
line_thickness (int): Thickness of the lines.
Returns:
PIL.Image.Image: The PIL image with the drawn lines.
"""
image = image.copy()
if isinstance(color, str):
color = PIL.ImageColor.getcolor(color, "RGB")
if colors is None:
colors = [color] * len(x_values)
else:
if isinstance(colors[0], str):
colors = [PIL.ImageColor.getcolor(c, "RGB") for c in colors]
if isinstance(x_values, int):
x_values = [x_values]
# Create a drawing context on the image
draw = PIL.ImageDraw.Draw(image)
if isinstance(x_values, int):
x_values = [x_values]
for x, c in zip(x_values, colors):
draw.line([(x, 0), (x, image.height)], fill=c, width=line_thickness)
return image
def show_arrow_on_image(image, start_loc, end_loc, color="red", thickness=3):
"""Draw a line on PIL image from start_loc to end_loc."""
image = image.copy()
color = get_predominant_color(color)
# Create an instance of the ImageDraw class
draw = ImageDraw.Draw(image)
# Draw the bounding box on the image
draw.line([start_loc, end_loc], fill=color, width=thickness)
return image
def draw_arrow_on_image_cv2(image, start_loc, end_loc, color="red", thickness=2, both_ends=False):
image = image.copy()
image = np.asarray(image)
if isinstance(color, str):
color = PIL.ImageColor.getcolor(color, "RGB")
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness)
if both_ends:
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness)
return PIL.Image.fromarray(image)
def draw_arrow_with_text(image, start_loc, end_loc, text="", color="red", thickness=2, font_size=20, both_ends=False, delta=5):
image = np.asarray(image)
if isinstance(color, str):
color = PIL.ImageColor.getcolor(color, "RGB")
# Calculate the center point between start_loc and end_loc
center_x = (start_loc[0] + end_loc[0]) // 2
center_y = (start_loc[1] + end_loc[1]) // 2
center_point = (center_x, center_y)
# Draw the arrowed line
image = cv2.arrowedLine(image, start_loc, end_loc, color, thickness)
if both_ends:
image = cv2.arrowedLine(image, end_loc, start_loc, color, thickness)
# Create a PIL image from the NumPy array for drawing text
image_with_text = Image.fromarray(image)
draw = PIL.ImageDraw.Draw(image_with_text)
# Calculate the text size
# font = PIL.ImageFont.truetype("arial.ttf", font_size)
# This gives an error: "OSError: cannot open resource", as a hack, use the following
text_width, text_height = draw.textsize(text)
# Calculate the position to center the text
text_x = center_x - (text_width // 2) - delta
text_y = center_y - (text_height // 2)
# Draw the text
draw.text((text_x, text_y), text, color)
return image_with_text
def draw_arrowed_line(image, start_loc, end_loc, color="red", thickness=2):
"""
Draw an arrowed line on a PIL image from a starting point to an ending point.
Args:
image (PIL.Image.Image): The input PIL image.
start_loc (tuple): Starting point (x, y) for the arrowed line.
end_loc (tuple): Ending point (x, y) for the arrowed line.
color (str): Color of the line (e.g., 'red', 'green', 'blue').
thickness (int): Thickness of the line and arrowhead.
Returns:
PIL.Image.Image: The PIL image with the drawn arrowed line.
"""
image = image.copy()
if isinstance(color, str):
color = PIL.ImageColor.getcolor(color, "RGB")
# Create a drawing context on the image
draw = ImageDraw.Draw(image)
# Draw a line from start to end
draw.line([start_loc, end_loc], fill=color, width=thickness)
# Calculate arrowhead points
arrow_size = 10 # Size of the arrowhead
dx = end_loc[0] - start_loc[0]
dy = end_loc[1] - start_loc[1]
length = (dx ** 2 + dy ** 2) ** 0.5
cos_theta = dx / length
sin_theta = dy / length
x1 = end_loc[0] - arrow_size * cos_theta
y1 = end_loc[1] - arrow_size * sin_theta
x2 = end_loc[0] - arrow_size * sin_theta
y2 = end_loc[1] + arrow_size * cos_theta
x3 = end_loc[0] + arrow_size * sin_theta
y3 = end_loc[1] - arrow_size * cos_theta
# Draw the arrowhead triangle
draw.polygon([end_loc, (x1, y1), (x2, y2), (x3, y3)], fill=color)
return image
def center_crop_to_fraction(image, frac=0.5):
"""Center crop an image to a fraction of its original size."""
width, height = image.size
new_width = int(width * frac)
new_height = int(height * frac)
left = (width - new_width) // 2
top = (height - new_height) // 2
right = (width + new_width) // 2
bottom = (height + new_height) // 2
return image.crop((left, top, right, bottom))
def decord_load_frames(vr, frame_indices):
if isinstance(frame_indices, int):
frame_indices = [frame_indices]
frames = vr.get_batch(frame_indices).asnumpy()
frames = [Image.fromarray(frame) for frame in frames]
return frames
def paste_mask_on_image(original_image, bounding_box, mask):
"""
Paste a 2D mask onto the original image at the location specified by the bounding box.
Parameters:
- original_image (PIL.Image): The original image.
- bounding_box (tuple): Bounding box coordinates (left, top, right, bottom).
- mask (PIL.Image): The 2D mask.
Returns:
- PIL.Image: Image with the mask pasted on it.
Example:
```
original_image = Image.open('original.jpg')
bounding_box = (100, 100, 200, 200)
mask = Image.open('mask.png')
result_image = paste_mask_on_image(original_image, bounding_box, mask)
result_image.show()
```
"""
# Create a copy of the original image to avoid modifying the input image
result_image = original_image.copy()
# Crop the mask to the size of the bounding box
mask_cropped = mask.crop((0, 0, bounding_box[2] - bounding_box[0], bounding_box[3] - bounding_box[1]))
# Paste the cropped mask onto the original image at the specified location
result_image.paste(mask_cropped, (bounding_box[0], bounding_box[1]))
return result_image
def display_images_as_video_moviepy(image_list, fps=5, show=True):
"""
Display a list of PIL images as a video in Jupyter Notebook using MoviePy.
Parameters:
- image_list (list): List of PIL images.
- fps (int): Frames per second for the video.
- show (bool): Whether to display the video in the notebook.
Example:
```
image_list = [Image.open('frame1.jpg'), Image.open('frame2.jpg'), ...]
display_images_as_video_moviepy(image_list, fps=10)
```
"""
from IPython.display import display
from moviepy.editor import ImageSequenceClip
image_list = list(map(np.asarray, image_list))
clip = ImageSequenceClip(image_list, fps=fps)
if show:
display(clip.ipython_display(width=200))
os.remove("__temp__.mp4")
def resize_height(img, H):
w, h = img.size
asp_ratio = w / h
W = np.ceil(asp_ratio * H).astype(int)
return img.resize((W, H))
def resize_width(img, W):
w, h = img.size
asp_ratio = w / h
H = int(W / asp_ratio)
return img.resize((W, H))
def resized_minor_side(img, size=256):
H, W = img.size
if H < W:
H_new = size
W_new = int(size * W / H)
return img.resize((W_new, H_new))
else:
W_new = size
H_new = int(size * H / W)
return img.resize((W_new, H_new))
def brighten_image(img, alpha=1.2):
enhancer = PIL.ImageEnhance.Brightness(img)
img = enhancer.enhance(alpha)
return img
def darken_image(img, alpha=0.8):
enhancer = PIL.ImageEnhance.Brightness(img)
img = enhancer.enhance(alpha)
return img
def fig2img(fig):
"""Convert a Matplotlib figure to a PIL Image and return it"""
import io
buf = io.BytesIO()
fig.savefig(buf)
buf.seek(0)
img = Image.open(buf)
return img
def show_temporal_tsne(
tsne,
timestamps=None,
title="tSNE: feature vectors over time",
cmap='viridis',
ax=None,
fig=None,
show=True,
num_ticks=10,
return_as_pil=False,
dpi=100,
label='Time (s)',
figsize=(6, 4),
s=None,
):
if timestamps is None:
timestamps = np.arange(len(tsne))
if ax is None or fig is None:
fig, ax = plt.subplots(1, 1, figsize=figsize, dpi=dpi)
cmap = plt.get_cmap(cmap)
scatter = ax.scatter(
tsne[:, 0], tsne[:, 1], c=np.arange(len(tsne)), cmap=cmap, s=s,
edgecolor='k', linewidth=0.5,
)
ax.grid(alpha=0.4)
ax.set_title(f"{title}", fontsize=11)
ax.set_xlabel("$z_{1}$")
ax.set_ylabel("$z_{2}$")
# Create a colorbar
cbar = fig.colorbar(scatter, ax=ax, label=label)
# Set custom ticks and labels on the colorbar
ticks = np.linspace(0, len(tsne) - 1, num_ticks, dtype=int)
tick_labels = np.round(timestamps[ticks], 1)
cbar.set_ticks(ticks)
cbar.set_ticklabels(tick_labels)
if show:
plt.show()
else:
if return_as_pil:
plt.tight_layout(pad=0.2)
# fig.canvas.draw()
# image = PIL.Image.frombytes(
# 'RGB',
# fig.canvas.get_width_height(),
# fig.canvas.tostring_rgb(),
# )
# return image
# Return as PIL Image without displaying the plt figure
image = fig2img(fig)
plt.close(fig)
return image
def mark_keypoints(image, keypoints, color=(255, 255, 0), radius=1):
"""
Marks keypoints on an image with a given color and radius.
:param image: The input PIL image.
:param keypoints: A list of (x, y) tuples representing the keypoints.
:param color: The color to use for the keypoints (default: red).
:param radius: The radius of the circle to draw for each keypoint (default: 5).
:return: A new PIL image with the keypoints marked.
"""
# Make a copy of the image to avoid modifying the original
image_copy = image.copy()
# Create a draw object to add graphical elements
draw = ImageDraw.Draw(image_copy)
# Loop through each keypoint and draw a circle
for x, y in keypoints:
# Draw a circle with the specified radius and color
draw.ellipse(
(x - radius, y - radius, x + radius, y + radius),
fill=color,
width=2
)
return image_copy
def draw_line_on_image(image, x_coords, y_coords, color=(255, 255, 0), width=3):
"""
Draws a line on an image given lists of x and y coordinates.
:param image: The input PIL image.
:param x_coords: List of x-coordinates for the line.
:param y_coords: List of y-coordinates for the line.
:param color: Color of the line in RGB (default is red).
:param width: Width of the line (default is 3).
:return: The PIL image with the line drawn.
"""
image = image.copy()
# Ensure the number of x and y coordinates are the same
if len(x_coords) != len(y_coords):
raise ValueError("x_coords and y_coords must have the same length")
# Create a draw object to draw on the image
draw = ImageDraw.Draw(image)
# Create a list of (x, y) coordinate tuples
coordinates = list(zip(x_coords, y_coords))
# Draw the line connecting the coordinates
draw.line(coordinates, fill=color, width=width)
return image
def add_binary_strip_vertically(
image,
binary_vector,
strip_width=15,
one_color="yellow",
zero_color="gray",
):
"""
Add a binary strip to the right side of an image.
:param image: PIL Image to which the strip will be added.
:param binary_vector: Binary vector of length 512 representing the strip.
:param strip_width: Width of the strip to be added.
:param one_color: Color for "1" pixels (default: red).
:param zero_color: Color for "0" pixels (default: white).
:return: New image with the binary strip added on the right side.
"""
one_color = PIL.ImageColor.getrgb(one_color)
zero_color = PIL.ImageColor.getrgb(zero_color)
height = image.height
if len(binary_vector) != height:
raise ValueError("Binary vector must be of length 512")
# Create a new strip with the specified width and 512 height
strip = PIL.Image.new("RGB", (strip_width, height))
# Fill the strip based on the binary vector
pixels = strip.load()
for i in range(height):
color = one_color if binary_vector[i] == 1 else zero_color
for w in range(strip_width):
pixels[w, i] = color
# Combine the original image with the new strip
# new_image = PIL.Image.new("RGB", (image.width + strip_width, height))
# new_image.paste(image, (0, 0))
# new_image.paste(strip, (image.width, 0))
new_image = image.copy()
new_image.paste(strip, (image.width - strip_width, 0))
return new_image
def add_binary_strip_horizontally(
image,
binary_vector,
strip_height=15,
one_color="limegreen",
zero_color="gray",
):
"""
Add a binary strip to the top of an image.
:param image: PIL Image to which the strip will be added.
:param binary_vector: Binary vector of length 512 representing the strip.
:param strip_height: Height of the strip to be added.
:param one_color: Color for "1" pixels, accepts color names or hex (default: red).
:param zero_color: Color for "0" pixels, accepts color names or hex (default: white).
:return: New image with the binary strip added at the top.
"""
width = image.width
if len(binary_vector) != width:
raise ValueError("Binary vector must be of length 512")
# Convert colors to RGB tuples
one_color_rgb = PIL.ImageColor.getrgb(one_color)
zero_color_rgb = PIL.ImageColor.getrgb(zero_color)
# Create a new strip with the specified height and 512 width
strip = PIL.Image.new("RGB", (width, strip_height))
# Fill the strip based on the binary vector
pixels = strip.load()
for i in range(width):
color = one_color_rgb if binary_vector[i] == 1 else zero_color_rgb
for h in range(strip_height):
pixels[i, h] = color
# Combine the original image with the new strip
# new_image = PIL.Image.new("RGB", (width, image.height + strip_height))
# new_image.paste(strip, (0, 0))
# new_image.paste(image, (0, strip_height))
new_image = image.copy()
new_image.paste(strip, (0, 0))
return new_image
# Define a function to increase font sizes for a specific plot
def increase_font_sizes(ax, font_scale=1.6):
for item in ([ax.title, ax.xaxis.label, ax.yaxis.label] +
ax.get_xticklabels() + ax.get_yticklabels()):
item.set_fontsize(item.get_fontsize() * font_scale)
def cut_fraction_of_bbox(image, box, frac=0.7):
"""
Cuts the image such that the box occupies a fraction of the image.
"""
W, H = image.size
x1, y1, x2, y2 = box
w = x2 - x1
h = y2 - y1
new_w = int(w / frac)
new_h = int(h / frac)
x1_new = max(0, x1 - (new_w - w) // 2)
x2_new = min(W, x2 + (new_w - w) // 2)
y1_new = max(0, y1 - (new_h - h) // 2)
y2_new = min(H, y2 + (new_h - h) // 2)
return image.crop((x1_new, y1_new, x2_new, y2_new))
|