Spaces:
Running
Running
File size: 11,340 Bytes
a0be511 1ef697d a0be511 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
custom_css = """
<style>
.container {
max-width: 100% !important;
padding-left: 0 !important;
padding-right: 0 !important;
}
.header {
padding: 30px;
margin-bottom: 30px;
text-align: center;
font-family: 'Helvetica Neue', Arial, sans-serif;
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
}
.header h1 {
font-size: 36px;
margin-bottom: 15px;
font-weight: bold;
color: #333333; /* Explicitly set heading color */
}
.header h2 {
font-size: 24px;
margin-bottom: 10px;
color: #333333; /* Explicitly set subheading color */
}
.header p {
font-size: 18px;
margin: 5px 0;
color: #666666;
}
.blue-text {
color: #4a90e2;
}
/* Custom styles for slider container */
.slider-container {
background-color: white !important;
padding-top: 0.9em;
padding-bottom: 0.9em;
}
/* Add gap before examples */
.examples-holder {
margin-top: 2em;
}
/* Set fixed size for example videos */
.gradio-container .gradio-examples .gr-sample {
width: 240px !important;
height: 135px !important;
object-fit: cover;
display: inline-block;
margin-right: 10px;
}
.gradio-container .gradio-examples {
display: flex;
flex-wrap: wrap;
gap: 10px;
}
/* Ensure the parent container does not stretch */
.gradio-container .gradio-examples {
max-width: 100%;
overflow: hidden;
}
/* Additional styles to ensure proper sizing in Safari */
.gradio-container .gradio-examples .gr-sample img {
width: 240px !important;
height: 135px !important;
object-fit: cover;
}
</style>
"""
custom_html = custom_css + """
<div class="header">
<h1><span class="blue-text">The Sound of Water</span>: Inferring Physical Properties from Pouring Liquids</h1>
<p><a href='https://bpiyush.github.io/pouring-water-website/'>Project Page</a> |
<a href='https://github.com/bpiyush/SoundOfWater'>Github</a> |
<a href='#'>Paper</a> |
<a href='https://huggingface.co/datasets/bpiyush/sound-of-water'>Data</a>
<a href='https://huggingface.co/bpiyush/sound-of-water-models'>Models</a></p>
</div>
"""
tips = """
<div>
<br><br>
Please give us a 🌟 on <a href='https://github.com/bpiyush/SoundOfWater'>Github</a> if you like our work!
Tips to get better results:
<ul>
<li>Make sure there is not too much noise such that the pouring is audible.</li>
<li>The video is not used during the inference.</li>
</ul>
</div>
"""
import os
import sys
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "serif"
import decord
import PIL, PIL.Image
import librosa
from IPython.display import Markdown, display
import pandas as pd
import shared.utils as su
import sound_of_water.audio_pitch.model as audio_models
import sound_of_water.data.audio_loader as audio_loader
import sound_of_water.data.audio_transforms as at
import sound_of_water.data.csv_loader as csv_loader
def read_html_file(file):
with open(file) as f:
return f.read()
def define_axes(figsize=(13, 4), width_ratios=[0.22, 0.78]):
fig, axes = plt.subplots(
1, 2, figsize=figsize, width_ratios=width_ratios,
layout="constrained",
)
return fig, axes
def show_frame_and_spectrogram(frame, spectrogram, visualise_args, axes=None):
"""Shows the frame and spectrogram side by side."""
if axes is None:
fig, axes = define_axes()
else:
assert len(axes) == 2
ax = axes[0]
ax.imshow(frame, aspect="auto")
ax.set_title("Example frame")
ax.set_xticks([])
ax.set_yticks([])
ax = axes[1]
audio_loader.show_logmelspectrogram(
S=spectrogram,
ax=ax,
show=False,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
)
def scatter_pitch(ax, t, f, s=60, marker="o", color="limegreen", label="Pitch"):
"""Scatter plot of pitch."""
ax.scatter(t, f, color=color, label=label, s=s, marker=marker)
ax.set_xlabel("Time (s)")
ax.set_ylabel("Frequency (Hz)")
ax.legend(loc="upper left")
def load_frame(video_path, video_backend="decord"):
if video_backend == "decord":
vr = decord.VideoReader(video_path, num_threads=1)
frame = PIL.Image.fromarray(vr[0].asnumpy())
elif video_backend == "torchvision":
import torchvision.io as tio
video, _, _ = tio.read_video(video_path, pts_unit="sec")
frame = video[0]
frame = PIL.Image.fromarray(frame.numpy())
else:
raise ValueError(f"Unknown video backend: {video_backend}")
frame = audio_loader.crop_or_pad_to_size(frame, size=(270, 480))
return frame
def load_spectrogram(video_path):
y = audio_loader.load_audio_clips(
audio_path=video_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
**aload_args,
)[0]
S = audio_loader.librosa_harmonic_spectrogram_db(
y,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
n_mels=visualise_args['n_mels'],
)
return S
# Load audio
visualise_args = {
"sr": 16000,
"n_fft": 400,
"hop_length": 320,
"n_mels": 64,
"margin": 16.,
"C": 340 * 100.,
"audio_output_fps": 49.,
"w_max": 100.,
"n_bins": 64,
}
aload_args = {
"sr": 16000,
"clip_len": None,
"backend": "decord",
}
cfg_backbone = {
"name": "Wav2Vec2WithTimeEncoding",
"args": dict(),
}
backbone = getattr(audio_models, cfg_backbone["name"])(
**cfg_backbone["args"],
)
cfg_model = {
"name": "WavelengthWithTime",
"args": {
"axial": True,
"axial_bins": 64,
"radial": True,
"radial_bins": 64,
"freeze_backbone": True,
"train_backbone_modules": [6, 7, 8, 9, 10, 11],
"act": "softmax",
"criterion": "kl_div",
}
}
def load_model():
model = getattr(audio_models, cfg_model["name"])(
backbone=backbone, **cfg_model["args"],
)
su.misc.num_params(model)
# Load the model weights from trained checkpoint
# NOTE: Be sure to set the correct path to the checkpoint
su.log.print_update("[:::] Loading checkpoint ", color="cyan", fillchar=".", pos="left")
# ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
ckpt_dir = "./checkpoints"
ckpt_path = os.path.join(
ckpt_dir,
"dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
)
assert os.path.exists(ckpt_path), \
f"Checkpoint not found at {ckpt_path}."
print("Loading checkpoint from: ", ckpt_path)
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt)
print(msg)
return model
# Define audio transforms
cfg_transform = {
"audio": {
"wave": [
{
"name": "AddNoise",
"args": {
"noise_level": 0.001
},
"augmentation": True,
},
{
"name": "ChangeVolume",
"args": {
"volume_factor": [0.8, 1.2]
},
"augmentation": True,
},
{
"name": "Wav2Vec2WaveformProcessor",
"args": {
"model_name": "facebook/wav2vec2-base-960h",
"sr": 16000
}
}
],
"spec": None,
}
}
audio_transform = at.define_audio_transforms(
cfg_transform, augment=False,
)
# Define audio pipeline arguments
apipe_args = {
"spec_args": None,
"stack": True,
}
def load_audio_tensor(video_path):
# Load and transform input audio
audio = audio_loader.load_and_process_audio(
audio_path=video_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
audio_transform=audio_transform,
aload_args=aload_args,
apipe_args=apipe_args,
)[0]
return audio
def get_model_output(audio, model):
with torch.no_grad():
NS = audio.shape[-1]
duration = NS / 16000
t = torch.tensor([[0, duration]]).unsqueeze(0)
x = audio.unsqueeze(0)
z_audio = model.backbone(x, t)[0][0].cpu()
y_audio = model(x, t)["axial"][0][0].cpu()
return z_audio, y_audio
def show_output(frame, S, y_audio, z_audio):
# duration = S.shape[-1] / visualise_args["sr"]
# print(S.shape, y_audio.shape, z_audio.shape)
duration = librosa.get_duration(
S=S,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
)
timestamps = np.linspace(0., duration, 25)
# Get timestamps at evaluation frames
n_frames = len(y_audio)
timestamps_eval = librosa.frames_to_time(
np.arange(n_frames),
sr=visualise_args['sr'],
n_fft=visualise_args['n_fft'],
hop_length=visualise_args['hop_length'],
)
# Get predicted frequencies at these times
wavelengths = y_audio @ torch.linspace(
0, visualise_args['w_max'], visualise_args['n_bins'],
)
f_pred = visualise_args['C'] / wavelengths
# Pick only those timestamps where we define the true pitch
indices = su.misc.find_nearest_indices(timestamps_eval, timestamps)
f_pred = f_pred[indices]
# print(timestamps, f_pred)
# Show the true/pref pitch overlaid on the spectrogram
fig, axes = define_axes()
show_frame_and_spectrogram(frame, S, visualise_args, axes=axes)
scatter_pitch(axes[1], timestamps, f_pred, color="white", label="Estimated pitch", marker="o", s=70)
axes[1].set_title("True and predicted pitch overlaid on the spectrogram")
# plt.show()
# Convert to PIL Image and return the Image
from PIL import Image
# Draw the figure to a canvas
canvas = fig.canvas
canvas.draw()
# Get the RGBA buffer from the figure
w, h = fig.canvas.get_width_height()
buf = canvas.tostring_rgb()
# Create a PIL image from the RGB data
image = Image.frombytes("RGB", (w, h), buf)
# Get physical properties
l_pred = su.physics.estimate_length_of_air_column(wavelengths)
l_pred_mean = l_pred.mean().item()
l_pred_mean = np.round(l_pred_mean, 2)
H_pred = su.physics.estimate_cylinder_height(wavelengths)
H_pred = np.round(H_pred, 2)
R_pred = su.physics.estimate_cylinder_radius(wavelengths)
R_pred = np.round(R_pred, 2)
# print(f"Estimated length: {l_pred_mean} cm, Estimated height: {H_pred} cm, Estimated radius: {R_pred} cm")
df_show = pd.DataFrame({
"Physical Property": ["Container height", "Container radius", "Length of air column (mean)"],
"Estimated Value (in cms)": [H_pred, R_pred, l_pred_mean],
})
tsne_image = su.visualize.show_temporal_tsne(
z_audio.detach().numpy(), timestamps_eval, show=False,
figsize=(6, 5), title="Temporal t-SNE of latent features",
return_as_pil = True,
)
return image, df_show, tsne_image
|