File size: 8,078 Bytes
15e05b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os
import sys
sys.path.append("../")

import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "serif"
import decord
import PIL, PIL.Image
import librosa
from IPython.display import Markdown, display
import pandas as pd

from util import *


css = """
<style>
    body {
        font-family: 'Arial', serif;
        margin: 0;
        padding: 0;
        color: black;
    }
    .header {
        display: flex;
        align-items: center;
        justify-content: center;
        margin-top: 5px;
        color: black;
    }
    .footer {
        display: flex;
        align-items: center;
        justify-content: center;
        margin-top: 5px;
    }
    .image {
        margin-right: 20px;
    }
    .content {
        text-align: center;
        color: black;
    }
    .title {
        font-size: 2.5em;
        font-weight: bold;
        margin-bottom: 10px;
    }
    .authors {
        color: #4a90e2;
        font-size: 1.05em;
        margin: 10px 0;
    }
    .affiliations {
        font-size: 1.em;
        margin-bottom: 20px;
    }
    .buttons {
        display: flex;
        justify-content: center;
        gap: 10px;
    }
    .button {
        background-color: #545758;
        text-decoration: none;
        padding: 8px 16px;
        border-radius: 5px;
        font-size: 1.05em;
    }
    .button:hover {
        background-color: #333;
    }
</style>
"""


header = css + """
<div class="header">
    <!-- <div class="image">
        <img src="./media_assets/pouring-water-logo5.png" alt="logo" width="100">
    </div> -->
    <div class="content">
        <img src="https://bpiyush.github.io/pouring-water-website/assets/pouring-water-logo5.png" alt="logo" width="80" style="margin-bottom: -50px; margin-right: 30px;">
        <div class="title" style="font-size: 44px; margin-left: -30px;">The Sound of Water</div>
        <div style="font-size: 30px; margin-left: -30px;"><b>Inferring Physical Properties from Pouring Liquids</b></div>
        <div class="authors">
            <a style="color: #92eaff; href="https://bpiyush.github.io/">Piyush Bagad</a><sup>1</sup>,
            <a style="color: #92eaff; href="https://makarandtapaswi.github.io/">Makarand Tapaswi</a><sup>2</sup>,
            <a style="color: #92eaff; href="https://www.ceessnoek.info/">Cees G. M. Snoek</a><sup>3</sup>,
            <a style="color: #92eaff; href="https://www.robots.ox.ac.uk/~az/">Andrew Zisserman</a><sup>1</sup>,
        </div>
        <div class="affiliations">
            <sup>1</sup>University of Oxford, <sup>2</sup>IIIT Hyderabad, <sup>3</sup>University of Amsterdam
        </div>
        
        <div class="buttons">
            <a href="#" style="color: #92eaff;" class="button">arXiv</a>
            <a href="https://bpiyush.github.io/pouring-water-website/" style="color: #92eaff;" class="button">🌐 Project</a>
            <a href="https://github.com/bpiyush/SoundOfWater" style="color: #92eaff;" class="button"> <img src="https://bpiyush.github.io/pouring-water-website/assets/github-logo.png" alt="logo" style="height:16px; float: left;"> &nbsp;Code</a>
            <a href="https://huggingface.co/datasets/bpiyush/sound-of-water" style="color: #92eaff;" class="button">πŸ€— Data</a>
            <a href="https://huggingface.co/bpiyush/sound-of-water-models" style="color: #92eaff;" class="button">πŸ€— Models</a>
            <a href="#" style="color: #92eaff;" class="button">🎯 Demo</a>
        </div>
    </div>
</div>
"""

footer = css + """
<div class="header" style="justify-content: left;">
<div class="content" style="font-size: 16px;">
Please give us a 🌟 on <a href='https://github.com/bpiyush/SoundOfWater'>Github</a> if you like our work!
Tips to get better results:
<br><br>
<ol style="text-align: left; font-size: 14px; margin-left: 30px">
    <li>Make sure there is not too much noise such that the pouring is audible.</li>
    <li>Note that the video is not used during the inference. Only the audio must be clear enough.</li>
</ol>
</div>
</div>
"""

# def process_input(video=None, youtube_link=None, start_time=None, end_time=None):
#     if video:
#         return f"Video file uploaded: {video.name}"
#     elif youtube_link and start_time and end_time:
#         return f"YouTube link: {youtube_link} (Start: {start_time}, End: {end_time})"
#     else:
#         return "Please upload a video or provide a YouTube link with start and end times."


def configure_input():
    gr.Markdown(
        "#### Either upload a video file or provide a YouTube link with start and end times."
    )
    video_input = gr.Video(label="Upload Video", height=480)
    youtube_link_start = gr.Textbox(label="YouTube Link (Start time)")
    youtube_link_end = gr.Textbox(label="YouTube Link (End time)")
    return [video_input, youtube_link_start, youtube_link_end]


# Example usage in a Gradio interface
def process_input(video, youtube_link_start, youtube_link_end):
    if video is not None:
        print(video)

        # Load model globally
        model = load_model()

        # The input is a video file path
        video_path = video

        # Load first frame
        frame = load_frame(video_path)

        # Load spectrogram
        S = load_spectrogram(video_path)

        # Load audio tensor
        audio = load_audio_tensor(video_path)

        # Get output
        z_audio, y_audio = get_model_output(audio, model)

        # Show image output
        image, df_show, tsne_image = show_output(frame, S, y_audio, z_audio)

        return image, df_show, gr.Markdown(note), tsne_image

    elif (youtube_link_start is not None) and (youtube_link_end is not None):
        # Using the provided YouTube link
        # Example: https://youtu.be/6-HVn8Jzzuk?t=10
        start_link = f"Processing YouTube link: {youtube_link_start}"
        end_link = f"Processing YouTube link: {youtube_link_end}"

        # Get video ID
        video_id = youtube_link_start.split("/")[-1].split("?")[0]
        assert video_id == youtube_link_end.split("/")[-1].split("?")[0], "Video IDs do not match"
        start_time = float(youtube_link_start.split("t=")[-1])
        end_time = float(youtube_link_end.split("t=")[-1])

        raise NotImplementedError("YouTube link processing is not implemented yet")
    else:
        return "No input provided"


def greet(name, is_morning, temperature):
    salutation = "Good morning" if is_morning else "Good evening"
    greeting = f"{salutation} {name}. It is {temperature} degrees today"
    celsius = (temperature - 32) * 5 / 9
    return greeting, round(celsius, 2)



note = """
**Note**: Radius (as well as height) estimation depends on accurate wavelength estimation towards the end.
Thus, it may not be accurate if the wavelength is not estimated correctly at the end.

$$
H = l(0) = \\frac{\lambda(0) - \lambda(T)}{4} \ \ \\text{and} \ \ R = \\frac{\lambda(T)}{4\\beta}
$$
"""


def configure_outputs():
    image_wide = gr.Image(label="Estimated pitch")
    dataframe = gr.DataFrame(label="Estimated physical properties")
    image_tsne = gr.Image(label="TSNE of features", width=300)
    markdown = gr.Markdown(label="Note")
    # ["image", "dataframe", "image", "markdown"]
    return [image_wide, dataframe, markdown, image_tsne]


# Configure pre-defined examples
examples = [
    ["./media_assets/example_video.mp4", None, None],
    ["./media_assets/ayNzH0uygFw_9.0_21.0.mp4", None, None],
    ["./media_assets/biDn0Gi6V8U_7.0_15.0.mp4", None, None],
    ["./media_assets/goWgiQQMugA_2.5_9.0.mp4", None, None],
    ["./media_assets/K87g4RvO-9k_254.0_259.0.mp4", None, None],
]


# Define Gradio interface
with gr.Blocks(
    css=custom_css,
    theme=gr.themes.Default(),
) as demo:

    # Add the header
    gr.HTML(header)
    
    gr.Interface(
        fn=process_input,
        inputs=configure_input(),
        outputs=configure_outputs(),
        examples=examples,
    )
        
    # Add the footer
    gr.HTML(footer)


# Launch the interface
demo.launch(allowed_paths=["."], share=True)