Spaces:
Sleeping
Sleeping
File size: 10,596 Bytes
eafbf97 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
"""Implements keypoint matching for a pair of images."""
import os
import numpy as np
import PIL
import cv2
import matplotlib.pyplot as plt
def show_single_image(img, figsize=(7, 5), title="Single image"):
"""Displays a single image."""
fig = plt.figure(figsize=figsize)
plt.axis("off")
plt.imshow(img)
plt.title(title)
plt.show()
def show_two_images(img1, img2, title="Two images"):
"""Displays a pair of images."""
fig, ax = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True)
ax[0].axis("off")
ax[0].imshow(img1)
ax[1].axis("off")
ax[1].imshow(img2)
plt.suptitle(title)
plt.show()
def show_three_images(img1, img2, img3, ax1_title="", ax2_title="", ax3_title="", title="Three images"):
"""Displays a triplet of images."""
fig, ax = plt.subplots(1, 3, figsize=(15, 5), constrained_layout=True)
ax[0].axis("off")
ax[0].imshow(img1)
ax[0].set_title(ax1_title)
ax[1].axis("off")
ax[1].imshow(img2)
ax[1].set_title(ax2_title)
ax[2].axis("off")
ax[2].imshow(img3)
ax[2].set_title(ax3_title)
plt.suptitle(title)
plt.show()
class KeypointMatcher:
"""Class for Keypoint matching for a pair of images."""
def __init__(self, **sift_args) -> None:
self.SIFT = cv2.SIFT_create(**sift_args)
self.BFMatcher = cv2.BFMatcher()
@staticmethod
def _check_images(img1: np.ndarray, img2: np.ndarray):
assert isinstance(img1, np.ndarray)
assert len(img1.shape) == 2
assert isinstance(img2, np.ndarray)
assert len(img2.shape) == 2
# assert img1.shape == img2.shape
@staticmethod
def _show_matches(img1, kp1, img2, kp2, matches, K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0))):
"""Displays matches found in the image"""
selected_matches = np.random.choice(matches, K)
img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args)
show_single_image(img3, figsize=figsize, title=f"Randomly selected K = {K} matches between the pair of images.")
return img3
def match(self, img1: PIL.Image, img2: PIL.Image, show_matches: bool = True):
"""Finds, describes and matches keypoints in given pair of images."""
img1 = np.array(img1)
img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
img2 = np.array(img2)
img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
# check input images
self._check_images(img1, img2)
# find kps and descriptors in each image
kp1, des1 = self.SIFT.detectAndCompute(img1, None)
kp2, des2 = self.SIFT.detectAndCompute(img2, None)
# compute matches via Brute-force matching
matches = self.BFMatcher.match(des1, des2)
# sort them in the order of their distance
matches = sorted(matches, key = lambda x:x.distance)
if show_matches:
self._show_matches(img1, kp1, img2, kp2, matches)
return matches, kp1, des1, kp2, des2
def warp(im, M, output_shape):
out = np.zeros((output_shape[0], output_shape[1]))
for i in range(output_shape[0]):
for j in range(output_shape[1]):
u, v = np.array([[i, j, 0, 0, 1, 0], [0, 0, i, j, 0, 1]]) @ M
u = int(round(u))
v = int(round(v))
if im.shape[0] > u >= 0 and im.shape[1] > v >= 0:
out[i, j] = im[u, v]
return out
def project_2d_to_6d(X: np.ndarray):
"""Projects X (N x 2) to Z (2N x 6) space."""
N = len(X)
assert X.shape == (N, 2)
Z = np.zeros((2 * N, 6))
# in columns 0 to 2, fill even indexed rows of Z with X, and fill 5th column with 1
Z[::2, 0:2] = X
Z[::2, 4] = 1.0
# in columns 2 to 4, fill odd indexed rows of Z with X
Z[1::2, 2:4] = X
Z[1::2, 5] = 1.0
return Z
def project_6d_to_2d(Z: np.ndarray):
"""Projects Z (2N x 6) to X (N x 2) space."""
N = len(Z) // 2
assert Z.shape == (2 * N, 6)
X_from_even_rows = Z[::2, 0:2]
X_from_odd_rows = Z[1::2, 2:4]
assert (X_from_even_rows == X_from_odd_rows).all()
return X_from_even_rows
def project_2d_to_1d(X: np.ndarray):
"""Returns X (N x 2) from Z (2N, 1)"""
N = len(X)
X_stretched = np.zeros(2 * N)
X_stretched[::2] = X[:, 0]
X_stretched[1::2] = X[:, 1]
return X_stretched
def project_1d_to_2d(Z: np.ndarray):
"""Returns X (N x 2) from Z (2N, 1)"""
N = len(Z) // 2
assert Z.shape == (2 * N,)
X = np.zeros((N, 2))
X[:, 0] = Z[::2]
X[:, 1] = Z[1::2]
return X
def rigid_body_transform(X: np.ndarray, params: np.ndarray):
"""Performs rigid body transformation of points X (N x 2) using params (6 x 1 flattened)"""
N = len(X)
assert X.shape == (N, 2)
X = project_2d_to_6d(X)
X_transformed = np.matmul(X, params)
X_transformed = project_1d_to_2d(X_transformed)
assert X_transformed.shape == (N, 2)
return X_transformed
def rigid_body_transform_params(X1: np.ndarray, X2: np.ndarray):
"""Returns rigid-body transform parameters RT (6 x 1) assuming transformation between X1 and X2"""
N = len(X1)
assert X1.shape == X2.shape
assert X1.shape == (N, 2)
# X2 = X1 * params => params = psuedoinverse(X1) * X2
X1_expanded = project_2d_to_6d(X1)
assert X1_expanded.shape == (2 * N, 6)
X2_stretched = project_2d_to_1d(X2)
assert X2_stretched.shape == (2 * N,)
params = np.dot(np.linalg.pinv(X1_expanded), X2_stretched)
return params
class ImageAlignment:
"""Class to perform alignment of a pair of images given keypoints."""
def __init__(self) -> None:
pass
@staticmethod
def show_transformed_points(img1, img2, X1, kp1, kp2, matches, params, num_inliers, num_to_show=20):
import matplotlib.cm as cm
H1, W1 = img1.shape
H2, W2 = img2.shape
img = np.hstack([img1, img2])
random_matches = np.random.choice(matches, num_to_show)
fig, ax = plt.subplots(1, 1, figsize=(15, 6))
colors = cm.rainbow(np.linspace(0, 1, num_to_show))
for i, match in enumerate(random_matches):
# select a single match to visualize
x1, y1 = kp1[match.queryIdx].pt
x2, y2 = kp2[match.trainIdx].pt
# get (x1, y1) transformed to (x1_transformed, y1_transformed)
A = project_2d_to_6d(np.array([[x1, y1]]))
(x1_transformed, y1_transformed) = np.dot(A, params)
ax.imshow(img, cmap="gray")
ax.axis("off")
ax.scatter(x1_transformed + W1, y1_transformed, s=200, marker="x", color=colors[i])
ax.plot(
(x1, x1_transformed + W1), (y1, y1_transformed),
linestyle="--", color=colors[i], marker="o",
)
ax.set_title(
f"Points in image 1 mapped to transformed points estimated by {num_inliers} points.",
fontsize=18,
)
os.makedirs("./results/", exist_ok=True)
plt.savefig(f"./results/match_transformed_inliers_{num_inliers}.png", bbox_inches="tight")
plt.show()
def ransac(
self, img1, kp1, img2, kp2, matches, num_matches=6, max_iter=500,
radius_in_px=10, show_transformed=True, inlier_th_for_show=1000
):
"""Performs RANSAC to find best matches."""
best_inlier_count = 0
best_params = None
# get coordinates of all points in image 1
X1 = np.array([kp1[matches[i].queryIdx].pt for i in range(len(matches))])
# get coordinates of all points in image 2
X2 = np.array([kp2[matches[i].trainIdx].pt for i in range(len(matches))])
for i in range(max_iter):
# choose matches randomly
selected_matches = np.random.choice(matches, num_matches)
# get matched keypoints in img1
X1_selected = np.array([kp1[selected_matches[i].queryIdx].pt for i in range(len(selected_matches))])
# get matched keypoints in img2
X2_selected = np.array([kp2[selected_matches[i].trainIdx].pt for i in range(len(selected_matches))])
# get transformation parameters
params = rigid_body_transform_params(X1_selected, X2_selected)
# transform X1 to get X2_transformed
X2_transformed = rigid_body_transform(X1, params)
# find inliers
diff = np.linalg.norm(X2_transformed - X2, axis=1)
indices = diff < radius_in_px
num_inliers = sum(indices)
if num_inliers > best_inlier_count:
print(f"Found {num_inliers} inliers!")
best_params = params
best_inlier_count = num_inliers
if show_transformed and num_inliers > inlier_th_for_show:
self.show_transformed_points(img1, img2, X1, kp1, kp2, matches, best_params, num_inliers)
return best_params
def align(
self, img1, kp1, img2, kp2, matches, num_matches=6,
max_iter=500, show_warped_image=True,
save_warped=False, path="results/sample.png",
method="custom"
):
best_params = self.ransac(img1, kp1, img2, kp2, matches, max_iter=max_iter, num_matches=num_matches)
# apply the affine transformation using cv2.warpAffine()
rows, cols = img1.shape[:2]
if method == 'custom':
img1_warped = warp(img1, best_params, (rows, cols))
else:
M = np.zeros((2, 3))
M[0, :2] = best_params[:2]
M[1, :2] = best_params[2:4]
M[0, 2] = best_params[4]
M[1, 2] = best_params[5]
img1_warped = cv2.warpAffine(img1, M, (cols, rows))
if show_warped_image:
show_three_images(
img1, img2, img1_warped, title="",
ax1_title="Image 1", ax2_title="Image 2", ax3_title="Transformation: Image 1 to Image 2",
)
if save_warped:
plt.imsave(path, img1_warped)
return best_params
if __name__ == "__main__":
# read & show images
boat1 = cv2.imread('boat1.pgm', cv2.IMREAD_GRAYSCALE)
boat2 = cv2.imread('boat2.pgm', cv2.IMREAD_GRAYSCALE)
show_two_images(boat1, boat2, title="Given pair of images.")
kp_matcher = KeypointMatcher(contrastThreshold=0.1, edgeThreshold=5)
matches, kp1, des1, kp2, des2 = kp_matcher.match(boat1, boat2, show_matches=True) |