File size: 10,596 Bytes
eafbf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
"""Implements keypoint matching for a pair of images."""
import os
import numpy as np
import PIL
import cv2
import matplotlib.pyplot as plt


def show_single_image(img, figsize=(7, 5), title="Single image"):
    """Displays a single image."""
    fig = plt.figure(figsize=figsize)
    plt.axis("off")
    plt.imshow(img)
    plt.title(title)
    plt.show()


def show_two_images(img1, img2, title="Two images"):
    """Displays a pair of images."""
    fig, ax = plt.subplots(1, 2, figsize=(10, 5), constrained_layout=True)

    ax[0].axis("off")
    ax[0].imshow(img1)

    ax[1].axis("off")
    ax[1].imshow(img2)

    plt.suptitle(title)
    plt.show()


def show_three_images(img1, img2, img3, ax1_title="", ax2_title="", ax3_title="", title="Three images"):
    """Displays a triplet of images."""
    fig, ax = plt.subplots(1, 3, figsize=(15, 5), constrained_layout=True)

    ax[0].axis("off")
    ax[0].imshow(img1)
    ax[0].set_title(ax1_title)

    ax[1].axis("off")
    ax[1].imshow(img2)
    ax[1].set_title(ax2_title)

    ax[2].axis("off")
    ax[2].imshow(img3)
    ax[2].set_title(ax3_title)

    plt.suptitle(title)
    plt.show()


class KeypointMatcher:
    """Class for Keypoint matching for a pair of images."""

    def __init__(self, **sift_args) -> None:
        self.SIFT = cv2.SIFT_create(**sift_args)
        self.BFMatcher = cv2.BFMatcher()
    
    @staticmethod
    def _check_images(img1: np.ndarray, img2: np.ndarray):
        assert isinstance(img1, np.ndarray)
        assert len(img1.shape) == 2

        assert isinstance(img2, np.ndarray)
        assert len(img2.shape) == 2

        # assert img1.shape == img2.shape
    
    @staticmethod
    def _show_matches(img1, kp1, img2, kp2, matches, K=10, figsize=(10, 5), drawMatches_args=dict(matchesThickness=3, singlePointColor=(0, 0, 0))):
        """Displays matches found in the image"""
        selected_matches = np.random.choice(matches, K)
        img3 = cv2.drawMatches(img1, kp1, img2, kp2, selected_matches, outImg=None, **drawMatches_args)
        show_single_image(img3, figsize=figsize, title=f"Randomly selected K = {K} matches between the pair of images.")
        return img3

    def match(self, img1: PIL.Image, img2: PIL.Image, show_matches: bool = True):
        """Finds, describes and matches keypoints in given pair of images."""
        
        img1 = np.array(img1)
        img1 = cv2.cvtColor(img1, cv2.COLOR_RGB2GRAY)
        
        img2 = np.array(img2)
        img2 = cv2.cvtColor(img2, cv2.COLOR_RGB2GRAY)
        
        # check input images
        self._check_images(img1, img2)

        # find kps and descriptors in each image
        kp1, des1 = self.SIFT.detectAndCompute(img1, None)
        kp2, des2 = self.SIFT.detectAndCompute(img2, None)

        # compute matches via Brute-force matching
        matches = self.BFMatcher.match(des1, des2)

        # sort them in the order of their distance
        matches = sorted(matches, key = lambda x:x.distance)

        if show_matches:
            self._show_matches(img1, kp1, img2, kp2, matches)

        return matches, kp1, des1, kp2, des2


def warp(im, M, output_shape):
    out = np.zeros((output_shape[0], output_shape[1]))
    for i in range(output_shape[0]):
        for j in range(output_shape[1]):
            u, v = np.array([[i, j, 0, 0, 1, 0], [0, 0, i, j, 0, 1]]) @ M
            u = int(round(u))
            v = int(round(v))
            if im.shape[0] > u >= 0 and im.shape[1] > v >= 0:
                out[i, j] = im[u, v]

    return out


def project_2d_to_6d(X: np.ndarray):
    """Projects X (N x 2) to Z (2N x 6) space."""
    N = len(X)
    assert X.shape == (N, 2)

    Z = np.zeros((2 * N, 6))
    # in columns 0 to 2, fill even indexed rows of Z with X, and fill 5th column with 1
    Z[::2, 0:2] = X
    Z[::2, 4] = 1.0
    # in columns 2 to 4, fill odd indexed rows of Z with X
    Z[1::2, 2:4] = X
    Z[1::2, 5] = 1.0

    return Z


def project_6d_to_2d(Z: np.ndarray):
    """Projects Z (2N x 6) to X (N x 2) space."""
    N = len(Z) // 2
    assert Z.shape == (2 * N, 6)

    X_from_even_rows = Z[::2, 0:2]
    X_from_odd_rows = Z[1::2, 2:4]
    assert (X_from_even_rows == X_from_odd_rows).all()

    return X_from_even_rows



def project_2d_to_1d(X: np.ndarray):
    """Returns X (N x 2) from Z (2N, 1)"""
    N = len(X)
    X_stretched = np.zeros(2 * N)
    X_stretched[::2] = X[:, 0]
    X_stretched[1::2] = X[:, 1]
    return X_stretched


def project_1d_to_2d(Z: np.ndarray):
    """Returns X (N x 2) from Z (2N, 1)"""
    N = len(Z) // 2
    assert Z.shape == (2 * N,)

    X = np.zeros((N, 2))
    X[:, 0] = Z[::2]
    X[:, 1] = Z[1::2]

    return X


def rigid_body_transform(X: np.ndarray, params: np.ndarray):
    """Performs rigid body transformation of points X (N x 2) using params (6 x 1 flattened)"""
    N = len(X)
    assert X.shape == (N, 2)

    X = project_2d_to_6d(X)

    X_transformed = np.matmul(X, params)
    X_transformed = project_1d_to_2d(X_transformed)
    assert X_transformed.shape == (N, 2)

    return X_transformed


def rigid_body_transform_params(X1: np.ndarray, X2: np.ndarray):
    """Returns rigid-body transform parameters RT (6 x 1) assuming transformation between X1 and X2"""
    N = len(X1)
    assert X1.shape == X2.shape
    assert X1.shape == (N, 2)

    # X2 = X1 * params => params = psuedoinverse(X1) * X2
    X1_expanded = project_2d_to_6d(X1)
    assert X1_expanded.shape == (2 * N, 6)

    X2_stretched = project_2d_to_1d(X2)
    assert X2_stretched.shape == (2 * N,)

    params = np.dot(np.linalg.pinv(X1_expanded), X2_stretched)
    return params


class ImageAlignment:
    """Class to perform alignment of a pair of images given keypoints."""

    def __init__(self) -> None:
        pass
    
    @staticmethod
    def show_transformed_points(img1, img2, X1, kp1, kp2, matches, params, num_inliers, num_to_show=20):
        import matplotlib.cm as cm

        H1, W1 = img1.shape
        H2, W2 = img2.shape
        img = np.hstack([img1, img2])

        random_matches = np.random.choice(matches, num_to_show)

        fig, ax = plt.subplots(1, 1, figsize=(15, 6))
        colors = cm.rainbow(np.linspace(0, 1, num_to_show))

        for i, match in enumerate(random_matches):

            # select a single match to visualize
            x1, y1 = kp1[match.queryIdx].pt
            x2, y2 = kp2[match.trainIdx].pt

            # get (x1, y1) transformed to (x1_transformed, y1_transformed)
            A = project_2d_to_6d(np.array([[x1, y1]]))
            (x1_transformed, y1_transformed) = np.dot(A, params)

            ax.imshow(img, cmap="gray")
            ax.axis("off")
            ax.scatter(x1_transformed + W1, y1_transformed, s=200, marker="x", color=colors[i])
            ax.plot(
                (x1, x1_transformed + W1), (y1, y1_transformed),
                linestyle="--", color=colors[i], marker="o",
            )

        ax.set_title(
            f"Points in image 1 mapped to transformed points estimated by {num_inliers} points.",
            fontsize=18,
        )

        os.makedirs("./results/", exist_ok=True)
        plt.savefig(f"./results/match_transformed_inliers_{num_inliers}.png", bbox_inches="tight")
        plt.show()

    def ransac(
            self, img1, kp1, img2, kp2, matches, num_matches=6, max_iter=500,
            radius_in_px=10, show_transformed=True, inlier_th_for_show=1000
        ):
        """Performs RANSAC to find best matches."""

        best_inlier_count = 0
        best_params = None

        # get coordinates of all points in image 1
        X1 = np.array([kp1[matches[i].queryIdx].pt for i in range(len(matches))])

        # get coordinates of all points in image 2
        X2 = np.array([kp2[matches[i].trainIdx].pt for i in range(len(matches))])

        for i in range(max_iter):
            # choose matches randomly
            selected_matches = np.random.choice(matches, num_matches)

            # get matched keypoints in img1
            X1_selected = np.array([kp1[selected_matches[i].queryIdx].pt for i in range(len(selected_matches))])

            # get matched keypoints in img2
            X2_selected = np.array([kp2[selected_matches[i].trainIdx].pt for i in range(len(selected_matches))])

            # get transformation parameters
            params = rigid_body_transform_params(X1_selected, X2_selected)
            
            # transform X1 to get X2_transformed
            X2_transformed = rigid_body_transform(X1, params)

            # find inliers
            diff = np.linalg.norm(X2_transformed - X2, axis=1)
            indices = diff < radius_in_px
            num_inliers = sum(indices)
            if num_inliers > best_inlier_count:
                print(f"Found {num_inliers} inliers!")
                best_params = params
                best_inlier_count = num_inliers

                if show_transformed and num_inliers > inlier_th_for_show:
                    self.show_transformed_points(img1, img2, X1, kp1, kp2, matches, best_params, num_inliers)

        return best_params
    
    def align(
            self, img1, kp1, img2, kp2, matches, num_matches=6,
            max_iter=500, show_warped_image=True,
            save_warped=False, path="results/sample.png",
            method="custom"
        ):
        best_params = self.ransac(img1, kp1, img2, kp2, matches, max_iter=max_iter, num_matches=num_matches)

        # apply the affine transformation using cv2.warpAffine()
        rows, cols = img1.shape[:2]

        if method == 'custom':
            img1_warped = warp(img1, best_params, (rows, cols))
        else:
            M = np.zeros((2, 3))
            M[0, :2] = best_params[:2]
            M[1, :2] = best_params[2:4]
            M[0, 2] = best_params[4]
            M[1, 2] = best_params[5]
            img1_warped = cv2.warpAffine(img1, M, (cols, rows))

        if show_warped_image:
            show_three_images(
                img1, img2, img1_warped, title="",
                ax1_title="Image 1", ax2_title="Image 2", ax3_title="Transformation: Image 1 to Image 2",
            )

        if save_warped:
            plt.imsave(path, img1_warped)

        return best_params


if __name__ == "__main__":
    # read & show images
    boat1 = cv2.imread('boat1.pgm', cv2.IMREAD_GRAYSCALE)
    boat2 = cv2.imread('boat2.pgm', cv2.IMREAD_GRAYSCALE)
    show_two_images(boat1, boat2, title="Given pair of images.")

    kp_matcher = KeypointMatcher(contrastThreshold=0.1, edgeThreshold=5)
    matches, kp1, des1, kp2, des2 = kp_matcher.match(boat1, boat2, show_matches=True)