File size: 14,761 Bytes
eafbf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
"""Helpers for metric functions"""
import numpy as np
import pandas as pd


def calculate_iou(box1, box2):
    """
    Calculate Intersection over Union (IoU) between two bounding boxes.

    Args:
        box1 (tuple): Coordinates of the first bounding box in the format (x1, y1, x2, y2).
        box2 (tuple): Coordinates of the second bounding box in the format (x1, y1, x2, y2).

    Returns:
        float: Intersection over Union (IoU) score.
    """
    # Extract coordinates
    x1, y1, x2, y2 = box1
    x1_, y1_, x2_, y2_ = box2

    # Calculate the intersection area
    intersection_area = max(0, min(x2, x2_) - max(x1, x1_)) * max(0, min(y2, y2_) - max(y1, y1_))

    # Calculate the areas of each bounding box
    box1_area = (x2 - x1) * (y2 - y1)
    box2_area = (x2_ - x1_) * (y2_ - y1_)

    # Calculate IoU
    iou = intersection_area / float(box1_area + box2_area - intersection_area)

    return iou


def compute_intersection_1d(x, y):
    # sort the boxes
    x1, x2 = sorted(x)
    y1, y2 = sorted(y)
    
    # compute the intersection
    intersection = max(0, min(x2, y2) - max(x1, y1))
    
    return intersection

def compute_union_1d(x, y):
    # sort the boxes
    x1, x2 = sorted(x)
    y1, y2 = sorted(y)
    
    # compute the union
    union = max(x2, y2) - min(x1, y1)
    
    return union


def compute_iou_1d(pred_box, true_box):
    """
    Compute IoU for 1D boxes.
    
    Args:
        pred_box (float): Predicted box, [x1, x2]
        true_box (float): Ground truth box, [x1, x2]
    
    Returns:
        float: IoU
    """
    intersection = compute_intersection_1d(pred_box, true_box)
    union = compute_union_1d(pred_box, true_box)
    iou = intersection / union
    return iou


def compute_iou_1d_single_candidate_multiple_targets(pred_box, true_boxes):
    """
    Compute IoU for 1D boxes.
    
    Args:
        pred_box (float): Predicted box, [x1, x2]
        true_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
    
    Returns:
        float: IoU
    """
    ious = []
    for i, true_box in enumerate(true_boxes):
        ious.append(compute_iou_1d(pred_box, true_box))
    return np.array(ious)


def compute_iou_1d_multiple_candidates_multiple_targets(pred_boxes, true_boxes):
    """
    Compute IoU for 1D boxes.
    
    Args:
        pred_boxes (np.ndarray): Predicted boxes, shape: (N, 2)
        true_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
    
    Returns:
        float: IoU
    """
    iou_matrix = np.zeros((len(pred_boxes), len(true_boxes)))
    for i, pred_box in enumerate(pred_boxes):
        for j, true_box in enumerate(true_boxes):
            iou_matrix[i, j] = compute_iou_1d(pred_box, true_box)
    return iou_matrix


def compute_mean_iou_1d(pred_boxes, gt_boxes, threshold=0.5):
    """
    Computes mean IOU for 1D bounding boxes.
    
    Args:
        pred_boxes (np.ndarray): Predicted boxes, shape: (N, 2)
        gt_boxes (np.ndarray): Ground truth boxes, shape: (N, 2)
        threshold (float): Threshold to consider a prediction correct
    
    Returns:
        float: Mean IOU
    """
    # Compute IoU for each pair of boxes
    iou_matrix = np.zeros((len(pred_boxes), len(gt_boxes)))
    for i, pred_box in enumerate(pred_boxes):
        for j, gt_box in enumerate(gt_boxes):
            iou_matrix[i, j] = compute_iou_1d(pred_box, gt_box)

    # Compute the max IoU for each predicted box
    max_iou_indices = np.argmax(iou_matrix, axis=1)
    max_iou = iou_matrix[np.arange(len(pred_boxes)), max_iou_indices]
    
    # For each predicted box, compute TP and FP ground truth boxes
    tp = np.zeros(len(pred_boxes))
    fp = np.zeros(len(pred_boxes))
    iou = np.zeros(len(pred_boxes))
    
    tp = np.where(iou_matrix >= threshold, 1, 0)
    tp = max_iou >= threshold
    fp = max_iou < threshold
    iou = max_iou
    mean_iou = np.mean(iou)
    import ipdb; ipdb.set_trace()







def calculate_mAP_1d(pred_boxes, pred_scores, true_boxes, iou_thresh=0.5):
    """Calculate mean average precision for 1D boxes.

    Args:
        pred_boxes (numpy array): Predicted boxes, shape (num_boxes,)
        pred_scores (numpy array): Predicted scores, shape (num_boxes,)
        true_boxes (numpy array): Ground truth boxes, shape (num_boxes,)
        iou_thresh (float): IoU threshold to consider a prediction correct

    Returns:
        float: Mean average precision (mAP)
    """
    # Sort predicted boxes by score (in descending order)
    sort_inds = np.argsort(pred_scores)[::-1]
    pred_boxes = pred_boxes[sort_inds]
    pred_scores = pred_scores[sort_inds]

    # Compute true positives and false positives at each threshold
    tp = np.zeros(len(pred_boxes))
    fp = np.zeros(len(pred_boxes))
    for i, box in enumerate(pred_boxes):
        ious = np.abs(box - true_boxes) / np.maximum(1e-9, np.abs(box) + np.abs(true_boxes))
        if len(ious) > 0:
            max_iou_idx = np.argmax(ious)
            if ious[max_iou_idx] >= iou_thresh:
                if tp[max_iou_idx] == 0:
                    tp[i] = 1
                    fp[i] = 0
                else:
                    fp[i] = 1
            else:
                fp[i] = 1

    # Compute precision and recall at each threshold
    tp_cumsum = np.cumsum(tp)
    fp_cumsum = np.cumsum(fp)
    recall = tp_cumsum / len(true_boxes)
    precision = tp_cumsum / (tp_cumsum + fp_cumsum)

    # Compute AP as area under precision-recall curve
    ap = 0
    for t in np.arange(0, 1.1, 0.1):
        if np.sum(recall >= t) == 0:
            p = 0
        else:
            p = np.max(precision[recall >= t])
        ap += p / 11

    return ap


def segment_iou(target_segment, candidate_segments):
    """Compute the temporal intersection over union between a
    target segment and all the test segments.
    Parameters
    ----------
    target_segment : 1d array
        Temporal target segment containing [starting, ending] times.
    candidate_segments : 2d array
        Temporal candidate segments containing N x [starting, ending] times.
    Outputs
    -------
    tiou : 1d array
        Temporal intersection over union score of the N's candidate segments.
    """
    tt1 = np.maximum(target_segment[0], candidate_segments[:, 0])
    tt2 = np.minimum(target_segment[1], candidate_segments[:, 1])
    # Intersection including Non-negative overlap score.
    segments_intersection = (tt2 - tt1).clip(0)
    # Segment union.
    segments_union = (candidate_segments[:, 1] - candidate_segments[:, 0]) \
      + (target_segment[1] - target_segment[0]) - segments_intersection
    # Compute overlap as the ratio of the intersection
    # over union of two segments.
    tIoU = segments_intersection.astype(float) / segments_union
    return tIoU


def interpolated_prec_rec(prec, rec):
    """Interpolated AP - VOCdevkit from VOC 2011.
    """
    mprec = np.hstack([[0], prec, [0]])
    mrec = np.hstack([[0], rec, [1]])
    for i in range(len(mprec) - 1)[::-1]:
        mprec[i] = max(mprec[i], mprec[i + 1])
    idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1
    ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprec[idx])
    return ap


from tqdm import tqdm
def compute_average_precision_detection(
        ground_truth,
        prediction,
        tiou_thresholds=np.linspace(0.5, 0.95, 10),
    ):
    """Compute average precision (detection task) between ground truth and
    predictions data frames. If multiple predictions occurs for the same
    predicted segment, only the one with highest score is matches as
    true positive. This code is greatly inspired by Pascal VOC devkit.

    Ref: https://github.com/zhang-can/CoLA/blob/\
        d21f1b5a4c6c13f9715cfd4ac1ebcd065d179157/eval/eval_detection.py#L200

    Parameters
    ----------
    ground_truth : df
        Data frame containing the ground truth instances.
        Required fields: ['video-id', 't-start', 't-end']
    prediction : df
        Data frame containing the prediction instances.
        Required fields: ['video-id, 't-start', 't-end', 'score']
    tiou_thresholds : 1darray, optional
        Temporal intersection over union threshold.
    Outputs
    -------
    ap : float
        Average precision score.
    """
    ap = np.zeros(len(tiou_thresholds))
    if prediction.empty:
        return ap

    npos = float(len(ground_truth))
    lock_gt = np.ones((len(tiou_thresholds),len(ground_truth))) * -1
    # Sort predictions by decreasing score order.
    sort_idx = prediction['score'].values.argsort()[::-1]
    prediction = prediction.loc[sort_idx].reset_index(drop=True)

    # Initialize true positive and false positive vectors.
    tp = np.zeros((len(tiou_thresholds), len(prediction)))
    fp = np.zeros((len(tiou_thresholds), len(prediction)))

    # Adaptation to query faster
    ground_truth_gbvn = ground_truth.groupby('video-id')

    # Assigning true positive to truly grount truth instances.
    for idx, this_pred in prediction.iterrows():

        try:
            # Check if there is at least one ground truth in the video associated.
            ground_truth_videoid = ground_truth_gbvn.get_group(this_pred['video-id'])
        except Exception as e:
            fp[:, idx] = 1
            continue

        this_gt = ground_truth_videoid.reset_index()
        tiou_arr = segment_iou(this_pred[['t-start', 't-end']].values,
                               this_gt[['t-start', 't-end']].values)
        # We would like to retrieve the predictions with highest tiou score.
        tiou_sorted_idx = tiou_arr.argsort()[::-1]
        for tidx, tiou_thr in enumerate(tiou_thresholds):
            for jdx in tiou_sorted_idx:
                if tiou_arr[jdx] < tiou_thr:
                    fp[tidx, idx] = 1
                    break
                if lock_gt[tidx, this_gt.loc[jdx]['index']] >= 0:
                    continue
                # Assign as true positive after the filters above.
                tp[tidx, idx] = 1
                lock_gt[tidx, this_gt.loc[jdx]['index']] = idx
                break

            if fp[tidx, idx] == 0 and tp[tidx, idx] == 0:
                fp[tidx, idx] = 1

    tp_cumsum = np.cumsum(tp, axis=1).astype(float)
    fp_cumsum = np.cumsum(fp, axis=1).astype(float)
    recall_cumsum = tp_cumsum / npos

    precision_cumsum = tp_cumsum / (tp_cumsum + fp_cumsum)

    for tidx in range(len(tiou_thresholds)):
        ap[tidx] = interpolated_prec_rec(precision_cumsum[tidx,:], recall_cumsum[tidx,:])


    return ap


def ap_wrapper(
        true_clips,
        pred_clips,
        pred_scores,
        tiou_thresholds=np.linspace(0.5, 0.95, 10),
    ):
    assert isinstance(true_clips, np.ndarray)
    assert len(true_clips.shape) == 2 and true_clips.shape[1] == 2
    assert isinstance(pred_clips, np.ndarray)
    assert len(pred_clips.shape) == 2 and pred_clips.shape[1] == 2
    assert isinstance(pred_scores, np.ndarray)
    assert len(pred_scores.shape) == 1 and len(pred_scores) == pred_clips.shape[0]
    
    true_df = pd.DataFrame(
        {
            "video-id": ["video1"] * len(true_clips),
            "t-start": true_clips[:, 0],
            "t-end": true_clips[:, 1],
        }
    )
    pred_df = pd.DataFrame(
        {
            "video-id": ["video1"] * len(pred_clips),
            "t-start": pred_clips[:, 0],
            "t-end": pred_clips[:, 1],
            "score": pred_scores,
        }
    )
    return compute_average_precision_detection(
        true_df,
        pred_df,
        tiou_thresholds=tiou_thresholds,
    )


def nms_1d(df: pd.DataFrame, score_col="score", iou_thresh=0.5):
    """Applies NMS on 1D (start, end) box predictions."""
    columns = set(df.columns)
    # assert columns == set(["video_id", "start", "end", "score"])
    assert set(["start", "end", "video_id", score_col]).issubset(columns)
    video_ids = df["video_id"].unique()
    
    # Group by video_id
    groups = df.groupby("video_id")
    
    # Loop over videos
    keep_indices = []
    net_success_fraction = []
    tqdm._instances.clear()
    iterator = tqdm(
        video_ids,
        desc="Applying NMS to each video",
        bar_format='{l_bar}{bar:10}{r_bar}{bar:-10b}',
    )
    for video_id in iterator:

        # Get rows for this video
        rows = groups.get_group(video_id)

        # Sort by score
        rows = rows.sort_values(score_col, ascending=False)
        
        # Loop over rows until empty
        n_clips = len(rows)
        n_clips_selected_in_video = 0
        while len(rows):
            
            # Add top row to keep_indices
            top_row = rows.iloc[0]
            keep_indices.append(rows.index[0])
            n_clips_selected_in_video += 1
            top_row = top_row.to_dict()
            
            top_segment = np.array([top_row["start"], top_row["end"]])
            rows = rows.iloc[1:]
            other_segments = rows[["start", "end"]].values
            iou_values = segment_iou(top_segment, other_segments)
            
            # Remove rows IoU > iou_thresh
            rows = rows[iou_values < iou_thresh]

        net_success_fraction.append(n_clips_selected_in_video / n_clips)
    net_success_fraction = np.array(net_success_fraction).mean()
    print("> Net success fraction: {:.2f}".format(net_success_fraction))
    
    return keep_indices


if __name__ == "__main__":
    true_clips = np.array(
        [
            [0.1, 0.7],
            [3.4, 7.8],
            [3.9, 5.4],
        ]
    )
    pred_clips = np.array(
        [
            [0.2, 0.8],
            [3.5, 7.9],
            [3.9, 5.4],
            [5.6, 6.7],
            [6.0, 6.5],
        ],
    )
    pred_scores = np.array([0.9, 0.8, 0.7, 0.6, 0.5])
    
    # 1. Check IoU for a single pair of boxes
    iou = compute_iou_1d(pred_clips[0], true_clips[0])
    # Manually check that the result is correct
    # Clips are [0.1, 0.7] and [0.2, 0.8]
    # Intersection: [0.2, 0.7] - length = 0.5
    # Union: [0.1, 0.8] - length = 0.7
    # Ratio: 0.5 / 0.7 = 0.714
    assert np.isclose(iou, 0.714, 3), "Incorrect IoU"
    
    # 2. Check IoU for a single predicted box and multiple ground truth boxes
    ious = compute_iou_1d_single_candidate_multiple_targets(pred_clips[0], true_clips)
    assert np.allclose(ious, [0.714, 0.0, 0.0], 3), "Incorrect IoU"
    
    # 3. Check mean IoU for multiple predicted boxes and multiple ground truth boxes
    ious = compute_iou_1d_multiple_candidates_multiple_targets(pred_clips, true_clips)
    assert ious.shape == (5, 3), "Incorrect shape"
    
    ap = ap_wrapper(
        true_clips,
        pred_clips,
        pred_scores,
        tiou_thresholds=np.linspace(0.5, 0.95, 3),
    )
    # Take the mean of the APs across IoU thresholds
    final_ap = np.mean(ap)
    import ipdb; ipdb.set_trace()