File size: 9,589 Bytes
eafbf97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
import numpy as np
import torch


# Universal constants
C = 340. * 100.  # Speed of sound in air (cm/s)


def compute_length_of_air_column_cylindrical(
        timestamps, duration, height, b, **kwargs,
    ):
    """
    Randomly chooses a l(t) curve satisfying the two point equations.
    """
    L = height * ( (1 - np.exp(b * (duration - timestamps))) / (1 - np.exp(b * duration)) )
    return L


def compute_axial_frequency_cylindrical(
        lengths, radius, beta=0.62, mode=1, **kwargs,
    ):
    """
    Computes axial resonance frequency for cylindrical container at given timestamps.
    """
    if mode == 1:
        harmonic_weight = 1.
    elif mode == 2:
        harmonic_weight = 3.
    elif mode == 3:
        harmonic_weight = 5.
    else:
        raise ValueError

    # Compute fundamental frequency curve
    F0 = harmonic_weight * (0.25 * C) * (1. / (lengths + (beta * radius)))

    return F0


def compute_axial_frequency_bottleneck(
        lengths, radius, height, Rn, Hn, beta_bottle=(0.6 + 8/np.pi), **kwargs,
    ):
    # Here, R and H are base radius and height of the bottleneck
    eps = 1e-6
    kappa = (0.5 * C / np.pi) * (Rn/radius) * np.sqrt(1 / (Hn + beta_bottle * Rn))
    frequencies = kappa * np.sqrt(1 / (lengths + eps))
    return frequencies


def compute_f0_cylindrical(Y, rho_g, a, R, H, mode=1, **kwargs,):

    if mode == 1:
        m = 1.875
        n = 2
    elif mode == 2:
        m = 4.694
        n = 3
    elif mode == 3:
        m = 7.855
        n = 4
    else:
        raise ValueError

    term = ( ((n**2 - 1)**2) + ((m * R/H)**4) ) / (1 + (1./n**2))
    f0 = (1. / (12 * np.pi)) * np.sqrt(3 * Y / rho_g) * (a / (R**2)) * np.sqrt(term)
    return f0


def compute_xi_cylindrical(rho_l, rho_g, R, a, **kwargs,):
    """
    Different papers use different multipliers.
    For us, using 12. * (4./9.) works best empirically.
    """
    xi = 12. * (4. / 9.) * (rho_l/rho_g) * (R/a)
    return xi


def compute_radial_frequency_cylindrical(
        heights, R, H, Y, rho_g, a, rho_l, power=3, mode=1, **kwargs,
    ):
    """
    Computes radial resonance frequency for cylindrical.

    Args:
        heights (np.ndarray): height of liquid at pre-defined time stamps
    """
    # Only f0 changes for higher modes
    f0 = compute_f0_cylindrical(Y, rho_g, a, R, H, mode=mode)
    xi = compute_xi_cylindrical(rho_l, rho_g, R, a)
    frequencies = f0 / np.sqrt(1 + xi * ((heights/H) ** power) )
    return frequencies


def compute_slant_lengths_semiconical(
        timestamps, duration, r_top, r_bot, height, **kwargs,
    ):

    # Top radius / base radius
    rf =  r_bot / r_top

    # Time fraction
    tf = timestamps/duration
    
    # Height fractions: h(t) / H
    height_fractions = (1. / (rf - 1)) * (np.cbrt(((rf**3 - 1) * (tf)) + 1) - 1)
    
    # Slant air column lengths
    heights = height_fractions * height
    slant_lengths = np.sqrt(1 - ((r_top - r_bot) / height)**2) * (height - heights)

    return slant_lengths


def compute_axial_frequency_semiconical(slant_lengths, r_top, r_bot, beta=1.28, **kwargs):
    """
    Computes axial resonance frequency for cylinder.

    Args:
        slant_lengths (np.ndarray): slant length of air column
        r_top (float): top radius
        r_bot (float): base radius
        beta (float): end correction coefficient
    """
    frequencies_axial = (C / 2) * (1 / (slant_lengths + (beta * (r_bot + r_top))))
    return frequencies_axial


def get_frequencies(
        t,
        params,
        container_shape="cylindrical",
        harmonic=None,
        vibration_type="axial",
        semiconical_as_cylinder=False,
    ):
    """
    Computes requires frequency f(t) for given t.
    """

    if container_shape == "semiconical":
        # Makes an assumption that semiconical shape is similar to cylindrical
        if semiconical_as_cylinder:
            container_shape = "cylindrical"
    
    if (container_shape == "cylindrical") or (container_shape == "bottleneck_as_cylindrical"):

        # Compute length of air column first
        lengths = compute_length_of_air_column_cylindrical(t, **params)

        if vibration_type == "axial":
            frequencies = compute_axial_frequency_cylindrical(lengths, **params)

            if harmonic is not None:
                assert harmonic > 0 and isinstance(harmonic, int)
                frequencies = frequencies * harmonic

        elif vibration_type == "radial":
            if harmonic is None:
                mode = 1
            else:
                assert isinstance(harmonic, int)
                assert harmonic in [1, 2]
                mode = harmonic + 1
            frequencies = compute_radial_frequency_cylindrical(
                lengths, mode=mode, **params,
            )

        else:
            raise NotImplementedError

    elif container_shape == "semiconical":

            # Compute length of air column first
            slant_lengths = compute_slant_lengths_semiconical(t, **params)

            if vibration_type == "axial":
                frequencies = compute_axial_frequency_semiconical(
                    slant_lengths, **params,
                )
    
                if harmonic is not None:
                    assert harmonic > 0 and isinstance(harmonic, int)
                    frequencies = frequencies * harmonic

            else:
                raise NotImplementedError

    elif container_shape == "bottleneck":

        # Compute length of air column first assuming 
        # base of the bottle is a cylindrical
        lengths = compute_length_of_air_column_cylindrical(t, **params)

        if vibration_type == "axial":
            frequencies = compute_axial_frequency_bottleneck(
                lengths, **params,
            )

            if harmonic is not None:
                assert harmonic > 0 and isinstance(harmonic, int)
                frequencies = frequencies * harmonic
        else:
            raise NotImplementedError

    else:
        raise ValueError

    return frequencies


def get_params(row, semiconical_as_cylinder=False):
    m = row["measurements"]
    duration = row["end_time"] - row["start_time"]
    params = dict(duration=duration)
    if row["shape"] == "cylindrical":
        radius = 0.25 * (m["diameter_top"] + m["diameter_bottom"])
        height = m["net_height"]
        params.update(
            height=height,
            radius=radius,
            beta=row.get("beta", 0.62),
            # Constant flow
            b=0.01,
        )
    elif row["shape"] == "semiconical":

        if semiconical_as_cylinder:
            # Assume semiconical shape as cylindrical
            radius = 0.25 * (m["diameter_top"] + m["diameter_bottom"])
            height = m["net_height"]
            params.update(
                height=height,
                radius=radius,
                beta=0.62,
                # Constant flow
                b=0.01,
            )
        else:
            r_top = 0.5 * m["diameter_top"]
            r_bot = 0.5 * m["diameter_bottom"]
            height = m["net_height"]
            beta = 1.28
            params.update(
                r_top=r_top,
                r_bot=r_bot,
                height=height,
                beta=beta,
            )
    elif row["shape"] == "bottleneck":
        radius = 0.5 * m["diameter_bottom"]
        Rn = 0.5 * m["diameter_top"]
        Hn = m["neck_height"] 
        height = m["net_height"] - Hn
        params.update(
            height=height,
            radius=radius,
            Rn=Rn,
            Hn=Hn,
            # Constant flow
            b=0.01,
        )
    elif row["shape"] == "bottleneck_as_cylindrical":
        # Approximates bottleneck as cylindrical
        radius = 0.5 * m["diameter_bottom"]
        height = m["net_height"] + m["neck_height"]
        params.update(
            height=height,
            radius=radius,
            beta=row.get("beta", 0.62),
            # Constant flow
            b=0.01,
        )
    else:
        raise ValueError
    return params

def frequency_to_wavelength(f):
    """
    Converts frequency to wavelength.

    Args:
        f (float): frequency
    """
    return C / f


def wavelength_to_frequency(l):
    """
    Converts wavelength to frequency.

    Args:
        l (float): wavelength
    """
    return C / l


def get_cylinder_radius(m):
    return 0.25 * (m['diameter_top'] + m['diameter_bottom'])


def get_cylinder_height(m):
    return m['net_height']


def get_flow_rate(m, duration):
    r = get_cylinder_radius(m)
    h = get_cylinder_height(m)
    volume = np.pi * (r**2) * h
    q = volume / duration
    return q


def get_length_of_air_column(m, duration, timestamps):
    h = get_cylinder_height(m)
    l = (-h/duration) * timestamps + h
    l = torch.from_numpy(l)
    return l


def estimate_cylinder_radius(wavelengths, timestamps=None, beta=0.62):
    radius_pred = ((1. / beta) * (wavelengths[-1] / 4.)).item()
    return radius_pred


def estimate_cylinder_height(wavelengths, timestamps=None, beta=0.62):
    height_pred = wavelengths[0] / 4. - wavelengths[-1] / 4.
    return height_pred.item()


def estimate_flow_rate(wavelengths, timestamps=None, output_fps=49.):
    radius = estimate_cylinder_radius(wavelengths)
    l_pred = (wavelengths - wavelengths[-1]) / 4.
    slope = np.gradient(l_pred).mean() * output_fps
    Q_pred = -np.pi * (radius**2) * slope
    return Q_pred


def estimate_length_of_air_column(wavelengths, timestamps=None):
    l_pred = (wavelengths - wavelengths[-1]) / 4.
    return l_pred