Spaces:
Running
Running
File size: 10,970 Bytes
15e05b1 e21ebc5 15e05b1 cdac373 e21ebc5 afd45ff e21ebc5 ff5b2ed e21ebc5 15e05b1 e21ebc5 15e05b1 e21ebc5 cdac373 e21ebc5 15e05b1 e21ebc5 49d9f95 e21ebc5 49d9f95 15e05b1 e21ebc5 15e05b1 e21ebc5 15e05b1 49d9f95 e21ebc5 cdac373 e21ebc5 15e05b1 e21ebc5 15e05b1 e21ebc5 15e05b1 e21ebc5 15e05b1 e21ebc5 15e05b1 e21ebc5 15e05b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 |
import os
import sys
sys.path.append("../")
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "serif"
import decord
import PIL, PIL.Image
import librosa
from IPython.display import Markdown, display
import pandas as pd
from util import *
css = """
<style>
body {
font-family: 'Arial', serif;
margin: 0;
padding: 0;
color: black;
}
.header {
display: flex;
align-items: center;
justify-content: center;
margin-top: 5px;
color: black;
}
.footer {
display: flex;
align-items: center;
justify-content: center;
margin-top: 5px;
}
.image {
margin-right: 20px;
}
.content {
text-align: center;
color: black;
}
.title {
font-size: 2.5em;
font-weight: bold;
margin-bottom: 10px;
}
.authors {
color: #4a90e2;
font-size: 1.05em;
margin: 10px 0;
}
.affiliations {
font-size: 1.em;
margin-bottom: 20px;
}
.buttons {
display: flex;
justify-content: center;
gap: 10px;
}
.button {
background-color: #545758;
text-decoration: none;
padding: 8px 16px;
border-radius: 5px;
font-size: 1.05em;
}
.button:hover {
background-color: #333;
}
</style>
"""
header = css + """
<div class="header">
<!-- <div class="image">
<img src="./media_assets/pouring-water-logo5.png" alt="logo" width="100">
</div> -->
<div class="content">
<img src="https://bpiyush.github.io/pouring-water-website/assets/pouring-water-logo5.png" alt="logo" width="80" style="margin-bottom: -50px; margin-right: 30px;">
<div class="title" style="font-size: 44px; margin-left: -30px;">The Sound of Water</div>
<div style="font-size: 30px; margin-left: -30px;"><b>Inferring Physical Properties from Pouring Liquids</b></div>
<div class="authors">
<a style="color: #92eaff; href="https://bpiyush.github.io/">Piyush Bagad</a><sup>1</sup>,
<a style="color: #92eaff; href="https://makarandtapaswi.github.io/">Makarand Tapaswi</a><sup>2</sup>,
<a style="color: #92eaff; href="https://www.ceessnoek.info/">Cees G. M. Snoek</a><sup>3</sup>,
<a style="color: #92eaff; href="https://www.robots.ox.ac.uk/~az/">Andrew Zisserman</a><sup>1</sup>,
</div>
<div class="affiliations">
<sup>1</sup>University of Oxford, <sup>2</sup>IIIT Hyderabad, <sup>3</sup>University of Amsterdam
</div>
<div class="buttons">
<a href="#" style="color: #92eaff;" class="button">arXiv</a>
<a href="https://bpiyush.github.io/pouring-water-website/" style="color: #92eaff;" class="button">π Project</a>
<a href="https://github.com/bpiyush/SoundOfWater" style="color: #92eaff;" class="button"> <img src="https://bpiyush.github.io/pouring-water-website/assets/github-logo.png" alt="logo" style="height:16px; float: left;"> Code</a>
<a href="https://huggingface.co/datasets/bpiyush/sound-of-water" style="color: #92eaff;" class="button">π€ Data</a>
<a href="https://huggingface.co/bpiyush/sound-of-water-models" style="color: #92eaff;" class="button">π€ Models</a>
<a href="#" style="color: #92eaff;" class="button">π― Demo</a>
</div>
</div>
</div>
"""
footer = css + """
<div class="header" style="justify-content: left;">
<div class="content" style="font-size: 16px;">
Please give us a π on <a href='https://github.com/bpiyush/SoundOfWater'>Github</a> if you like our work!
Tips to get better results:
<br><br>
<ol style="text-align: left; font-size: 14px; margin-left: 30px">
<li>The first example may take up to 30-60s for processing since the model is also loaded.</li>
<li>
If you are providing a link, it may take a few seconds to download video from YouTube.
Note that the entire video shall be used.
If the sound of pouring is not clear, the results will be random.
</li>
<li>Although the model is somewhat robust to noise, make sure there is not too much noise such that the pouring is audible.</li>
<li>Note that the video is not used during the inference. The displayed frame is only for reference.</li>
</ol>
</div>
</div>
"""
from download_youtube import download_youtube_video_ytdlp
def download_from_youtube(
video_id,
save_dir="/tmp/",
convert_to_mp4=False,
):
"""
Downloads a YouTube video from start to end times.
Args:
video_id (str): YouTube video ID.
save_dir (str): Directory to save the video.
convert_to_mp4 (bool): Whether to convert the video to mp4 format.
The saved video is in the format: {save_dir}/{video_id}.mp4
"""
import datetime
from subprocess import call
print("Downloading video from YouTube...")
print("Video ID:", video_id)
command = [
"yt-dlp",
"-o", "'{}%(id)s.%(ext)s'".format(save_dir),
"--cookies ./youtube_cookies.txt",
"--verbose",
"--force-overwrites",
f"https://www.youtube.com/watch?v={video_id}",
]
try:
call(" ".join(command), shell=True)
except Exception as e:
print(e)
raise IOError("Failed to download to download YouTube video.")
# If not mp4, convert to mp4
from glob import glob
saved_filepath = glob(os.path.join(save_dir, f"{video_id}.*"))[0]
print("Saved file:", saved_filepath)
if convert_to_mp4:
ext = saved_filepath.split(".")[-1]
to_save = saved_filepath.replace(ext, "mp4")
if ext != "mp4":
# convert to mp4 using ffmpeg
command = "ffmpeg -y -i {} {}".format(saved_filepath, to_save)
call(command, shell=True)
return to_save
else:
return saved_filepath
def configure_input():
gr.Markdown(
"#### Either upload a video file or provide a YouTube link to a video. Note that the entire video shall be used.",
)
video_input = gr.Video(label="Upload Video", height=520)
youtube_link = gr.Textbox(label="YouTube Link", value=None)
gr.Markdown(
"Note: Often, YouTube download can fail because the video may not be public or YouTube asks for Sign in."\
"We recommend downloading the video in other ways on your machine and uploading it here."\
" Alternatively, you can clone the repository and run the demo locally which can allow for Sign-in.",
)
return [video_input, youtube_link]
# video_backend = "decord"
video_backend = "torchvision"
def get_predictions(video_path):
model = load_model()
frame = load_frame(video_path, video_backend=video_backend)
S = load_spectrogram(video_path)
audio = load_audio_tensor(video_path)
z_audio, y_audio = get_model_output(audio, model)
image, df_show, tsne_image = show_output(frame, S, y_audio, z_audio)
return image, df_show, tsne_image
def get_video_id_from_url(url):
import re
if "v=" in url:
video_id = re.findall(r"v=([a-zA-Z0-9_-]+)", url)
elif "youtu.be" in url:
video_id = re.findall(r"youtu.be/([a-zA-Z0-9_-]+)", url)
elif "shorts" in url:
video_id = re.findall(r"shorts/([a-zA-Z0-9_-]+)", url)
else:
raise ValueError("Invalid YouTube URL")
print("Video URL:", url)
print("Video ID:", video_id)
if len(video_id) > 0:
return video_id[0]
else:
raise ValueError("Invalid YouTube URL")
note = """
**Note**: Radius (as well as height) estimation depends on accurate wavelength estimation towards the end.
Thus, it may not be accurate if the wavelength is not estimated correctly at the end.
$$
H = l(0) = \\frac{\lambda(0) - \lambda(T)}{4} \ \ \\text{and} \ \ R = \\frac{\lambda(T)}{4\\beta}
$$
"""
# Example usage in a Gradio interface
def process_input(video, youtube_link):
provided_video = video is not None
if youtube_link is None:
provided_link = False
elif isinstance(youtube_link, str):
provided_link = len(youtube_link) > 0
else:
raise ValueError(f"Invalid type of link {youtube_link}.")
if provided_video and provided_link:
raise ValueError("Please provide either a video file or a YouTube link, not both.")
if provided_video:
print(video)
# # Load model globally
# model = load_model()
# The input is a video file path
video_path = video
# Get predictions
image, df_show, tsne_image = get_predictions(video_path)
return image, df_show, gr.Markdown(note), tsne_image
else:
print(provided_link)
assert provided_link, \
"YouTube Link cannot be empty if no video is provided."
video_id = get_video_id_from_url(youtube_link)
print("Video ID:", video_id)
video_path = download_youtube_video_ytdlp(
video_id, save_dir="/tmp/",
)
# Get predictions
image, df_show, tsne_image = get_predictions(video_path)
# Add youtube link to the note
local_note = f"{note}\n\nYou can watch the original video here: "\
f"[YouTube Link](https://www.youtube.com/watch?v={video_id})"
return image, df_show, gr.Markdown(local_note), tsne_image
def configure_outputs():
image_wide = gr.Image(label="Estimated pitch")
dataframe = gr.DataFrame(label="Estimated physical properties")
image_tsne = gr.Image(label="TSNE of features", width=300)
markdown = gr.Markdown(label="Note")
return [image_wide, dataframe, markdown, image_tsne]
# Configure pre-defined examples
examples = [
["./media_assets/example_video.mp4", None],
["./media_assets/ayNzH0uygFw_9.0_21.0.mp4", None],
["./media_assets/biDn0Gi6V8U_7.0_15.0.mp4", None],
["./media_assets/goWgiQQMugA_2.5_9.0.mp4", None],
["./media_assets/K87g4RvO-9k_254.0_259.0.mp4", None],
# Shows that it works with background noise
["./media_assets/l74zJHCZ9uA.webm", None],
# Shows that it works with a slightly differently shaped container
["./media_assets/LpRPV0hIymU.webm", None],
["./media_assets/k-HnMsS36J8.webm", None],
# [None, "https://www.youtube.com/shorts/6eUQTdkTooo"],
# [None, "https://www.youtube.com/shorts/VxZT15cG6tw"],
# [None, "https://www.youtube.com/shorts/GSXQnNhliDY"],
]
# Define Gradio interface
with gr.Blocks(
css=custom_css,
theme=gr.themes.Default(),
) as demo:
# Add the header
gr.HTML(header)
gr.Interface(
fn=process_input,
inputs=configure_input(),
outputs=configure_outputs(),
examples=examples,
)
# Add the footer
gr.HTML(footer)
# Launch the interface
demo.launch(allowed_paths=["."], share=True) |