custom_css = """
"""
custom_html = custom_css + """
"""
tips = """
Please give us a 🌟 on
Github if you like our work!
Tips to get better results:
- Make sure there is not too much noise such that the pouring is audible.
- The video is not used during the inference.
"""
import os
import sys
import gradio as gr
import torch
import numpy as np
import matplotlib.pyplot as plt
plt.rcParams["font.family"] = "serif"
import decord
import PIL, PIL.Image
import librosa
from IPython.display import Markdown, display
import pandas as pd
import shared.utils as su
import sound_of_water.audio_pitch.model as audio_models
import sound_of_water.data.audio_loader as audio_loader
import sound_of_water.data.audio_transforms as at
import sound_of_water.data.csv_loader as csv_loader
def read_html_file(file):
with open(file) as f:
return f.read()
def define_axes(figsize=(13, 4), width_ratios=[0.22, 0.78]):
fig, axes = plt.subplots(
1, 2, figsize=figsize, width_ratios=width_ratios,
layout="constrained",
)
return fig, axes
def show_frame_and_spectrogram(frame, spectrogram, visualise_args, axes=None):
"""Shows the frame and spectrogram side by side."""
if axes is None:
fig, axes = define_axes()
else:
assert len(axes) == 2
ax = axes[0]
ax.imshow(frame, aspect="auto")
ax.set_title("Example frame")
ax.set_xticks([])
ax.set_yticks([])
ax = axes[1]
audio_loader.show_logmelspectrogram(
S=spectrogram,
ax=ax,
show=False,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
)
def scatter_pitch(ax, t, f, s=60, marker="o", color="limegreen", label="Pitch"):
"""Scatter plot of pitch."""
ax.scatter(t, f, color=color, label=label, s=s, marker=marker)
ax.set_xlabel("Time (s)")
ax.set_ylabel("Frequency (Hz)")
ax.legend(loc="upper left")
# Load video frame
def load_frame(video_path):
vr = decord.VideoReader(video_path, num_threads=1)
frame = PIL.Image.fromarray(vr[0].asnumpy())
frame = audio_loader.crop_or_pad_to_size(frame, size=(270, 480))
return frame
def load_spectrogram(video_path):
y = audio_loader.load_audio_clips(
audio_path=video_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
**aload_args,
)[0]
S = audio_loader.librosa_harmonic_spectrogram_db(
y,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
n_mels=visualise_args['n_mels'],
)
return S
# Load audio
visualise_args = {
"sr": 16000,
"n_fft": 400,
"hop_length": 320,
"n_mels": 64,
"margin": 16.,
"C": 340 * 100.,
"audio_output_fps": 49.,
"w_max": 100.,
"n_bins": 64,
}
aload_args = {
"sr": 16000,
"clip_len": None,
"backend": "decord",
}
cfg_backbone = {
"name": "Wav2Vec2WithTimeEncoding",
"args": dict(),
}
backbone = getattr(audio_models, cfg_backbone["name"])(
**cfg_backbone["args"],
)
cfg_model = {
"name": "WavelengthWithTime",
"args": {
"axial": True,
"axial_bins": 64,
"radial": True,
"radial_bins": 64,
"freeze_backbone": True,
"train_backbone_modules": [6, 7, 8, 9, 10, 11],
"act": "softmax",
"criterion": "kl_div",
}
}
def load_model():
model = getattr(audio_models, cfg_model["name"])(
backbone=backbone, **cfg_model["args"],
)
su.misc.num_params(model)
# Load the model weights from trained checkpoint
# NOTE: Be sure to set the correct path to the checkpoint
su.log.print_update("[:::] Loading checkpoint ", color="cyan", fillchar=".", pos="left")
# ckpt_dir = "/work/piyush/pretrained_checkpoints/SoundOfWater"
ckpt_dir = "./checkpoints"
ckpt_path = os.path.join(
ckpt_dir,
"dsr9mf13_ep100_step12423_real_finetuned_with_cosupervision.pth",
)
assert os.path.exists(ckpt_path), \
f"Checkpoint not found at {ckpt_path}."
print("Loading checkpoint from: ", ckpt_path)
ckpt = torch.load(ckpt_path, map_location="cpu")
msg = model.load_state_dict(ckpt)
print(msg)
return model
# Define audio transforms
cfg_transform = {
"audio": {
"wave": [
{
"name": "AddNoise",
"args": {
"noise_level": 0.001
},
"augmentation": True,
},
{
"name": "ChangeVolume",
"args": {
"volume_factor": [0.8, 1.2]
},
"augmentation": True,
},
{
"name": "Wav2Vec2WaveformProcessor",
"args": {
"model_name": "facebook/wav2vec2-base-960h",
"sr": 16000
}
}
],
"spec": None,
}
}
audio_transform = at.define_audio_transforms(
cfg_transform, augment=False,
)
# Define audio pipeline arguments
apipe_args = {
"spec_args": None,
"stack": True,
}
def load_audio_tensor(video_path):
# Load and transform input audio
audio = audio_loader.load_and_process_audio(
audio_path=video_path,
clips=None,
load_entire=True,
cut_to_clip_len=False,
audio_transform=audio_transform,
aload_args=aload_args,
apipe_args=apipe_args,
)[0]
return audio
def get_model_output(audio, model):
with torch.no_grad():
NS = audio.shape[-1]
duration = NS / 16000
t = torch.tensor([[0, duration]]).unsqueeze(0)
x = audio.unsqueeze(0)
z_audio = model.backbone(x, t)[0][0].cpu()
y_audio = model(x, t)["axial"][0][0].cpu()
return z_audio, y_audio
def show_output(frame, S, y_audio, z_audio):
# duration = S.shape[-1] / visualise_args["sr"]
# print(S.shape, y_audio.shape, z_audio.shape)
duration = librosa.get_duration(
S=S,
sr=visualise_args["sr"],
n_fft=visualise_args["n_fft"],
hop_length=visualise_args["hop_length"],
)
timestamps = np.linspace(0., duration, 25)
# Get timestamps at evaluation frames
n_frames = len(y_audio)
timestamps_eval = librosa.frames_to_time(
np.arange(n_frames),
sr=visualise_args['sr'],
n_fft=visualise_args['n_fft'],
hop_length=visualise_args['hop_length'],
)
# Get predicted frequencies at these times
wavelengths = y_audio @ torch.linspace(
0, visualise_args['w_max'], visualise_args['n_bins'],
)
f_pred = visualise_args['C'] / wavelengths
# Pick only those timestamps where we define the true pitch
indices = su.misc.find_nearest_indices(timestamps_eval, timestamps)
f_pred = f_pred[indices]
# print(timestamps, f_pred)
# Show the true/pref pitch overlaid on the spectrogram
fig, axes = define_axes()
show_frame_and_spectrogram(frame, S, visualise_args, axes=axes)
scatter_pitch(axes[1], timestamps, f_pred, color="white", label="Estimated pitch", marker="o", s=70)
axes[1].set_title("True and predicted pitch overlaid on the spectrogram")
# plt.show()
# Convert to PIL Image and return the Image
from PIL import Image
# Draw the figure to a canvas
canvas = fig.canvas
canvas.draw()
# Get the RGBA buffer from the figure
w, h = fig.canvas.get_width_height()
buf = canvas.tostring_rgb()
# Create a PIL image from the RGB data
image = Image.frombytes("RGB", (w, h), buf)
# Get physical properties
l_pred = su.physics.estimate_length_of_air_column(wavelengths)
l_pred_mean = l_pred.mean().item()
l_pred_mean = np.round(l_pred_mean, 2)
H_pred = su.physics.estimate_cylinder_height(wavelengths)
H_pred = np.round(H_pred, 2)
R_pred = su.physics.estimate_cylinder_radius(wavelengths)
R_pred = np.round(R_pred, 2)
# print(f"Estimated length: {l_pred_mean} cm, Estimated height: {H_pred} cm, Estimated radius: {R_pred} cm")
df_show = pd.DataFrame({
"Physical Property": ["Container height", "Container radius", "Length of air column (mean)"],
"Estimated Value (in cms)": [H_pred, R_pred, l_pred_mean],
})
tsne_image = su.visualize.show_temporal_tsne(
z_audio.detach().numpy(), timestamps_eval, show=False,
figsize=(6, 5), title="Temporal t-SNE of latent features",
return_as_pil = True,
)
return image, df_show, tsne_image