from flask import Flask, render_template, request, redirect, url_for import os import librosa import numpy as np import tensorflow as tf from sklearn.preprocessing import StandardScaler import pickle import subprocess # Untuk menjalankan perintah FFmpeg import threading # Untuk menjalankan penghapusan otomatis file setelah delay app = Flask(__name__) # Path folder untuk menyimpan file yang diunggah UPLOAD_FOLDER = 'static/uploads' app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER # Load model dan scaler model = tf.keras.models.load_model('model_code1.keras') with open('scaler.pkl', 'rb') as f: scaler = pickle.load(f) # Label genre musik genres = ['blues', 'classical', 'country', 'disco', 'hiphop', 'jazz', 'metal', 'pop', 'reggae', 'rock'] # Fungsi untuk menghapus file setelah delay def delete_file_after_delay(file_path, delay=3600): def delete_file(): try: if os.path.exists(file_path): os.remove(file_path) print(f"File {file_path} berhasil dihapus setelah {delay} detik.") except Exception as e: print(f"Gagal menghapus file {file_path}: {e}") # Jalankan penghapusan file dalam thread baru threading.Timer(delay, delete_file).start() # Fungsi untuk mengonversi MP3 ke WAV menggunakan FFmpeg def convert_mp3_to_wav(mp3_path): wav_path = mp3_path.replace('.mp3', '.wav') # Ubah ekstensi ke .wav try: # Jalankan perintah FFmpeg untuk konversi subprocess.run(['ffmpeg', '-i', mp3_path, wav_path], check=True) # Hapus file MP3 setelah berhasil dikonversi os.remove(mp3_path) return wav_path except subprocess.CalledProcessError as e: print(f"Error converting MP3 to WAV: {e}") return None except OSError as e: print(f"Error deleting MP3 file: {e}") return None # Fungsi untuk ekstraksi fitur dari file musik def extract_features(file_path): try: y, sr = librosa.load(file_path, duration=30, sr=22050) # Ekstraksi fitur mfccs = np.mean(librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13).T, axis=0) chroma = np.mean(librosa.feature.chroma_stft(y=y, sr=sr).T, axis=0) spectral_contrast = np.mean(librosa.feature.spectral_contrast(y=y, sr=sr).T, axis=0) zero_crossings = np.mean(librosa.feature.zero_crossing_rate(y).T, axis=0) tempo, _ = librosa.beat.beat_track(y=y, sr=sr) # Menggabungkan semua fitur features = np.hstack([mfccs, chroma, spectral_contrast, zero_crossings, tempo]) return features except Exception as e: print(f"Error extracting features: {e}") return None @app.route('/', methods=['GET', 'POST']) def index(): if request.method == 'POST': # Periksa apakah file diunggah if 'file' not in request.files: return redirect(request.url) file = request.files['file'] if file.filename == '': return redirect(request.url) # Simpan file ke folder yang ditentukan file_path = os.path.join(app.config['UPLOAD_FOLDER'], file.filename) file.save(file_path) # Periksa format file if file.filename.lower().endswith('.mp3'): # Konversi MP3 ke WAV file_path_wav = convert_mp3_to_wav(file_path) if file_path_wav is None: return "Konversi MP3 ke WAV gagal. Pastikan file yang diunggah valid." file_path = file_path_wav # Gunakan file WAV untuk proses berikutnya # Ekstraksi fitur dari file yang diunggah features = extract_features(file_path) if features is None: return "Ekstraksi fitur gagal. Coba unggah file lain." # Normalisasi fitur menggunakan scaler features_scaled = scaler.transform([features]) # Prediksi genre menggunakan model prediction = model.predict(features_scaled) predicted_genre = genres[np.argmax(prediction)] # Hapus file WAV setelah 30 detik delete_file_after_delay(file_path, delay=30) # Kembalikan hasil prediksi return render_template('index.html', file_path=file_path, prediction=predicted_genre) return render_template('index.html') if __name__ == '__main__': app.run(debug=True)