bram4627's picture
Update app.py
0bb50bf verified
raw
history blame
3.61 kB
from fastapi import FastAPI
from asgiref.wsgi import WsgiToAsgi
from flask import Flask, request, render_template
import joblib
from tensorflow.keras.models import load_model
import numpy as np
import os
from fastapi.middleware.wsgi import WSGIMiddleware
# Load models
model_load = load_model('lstm_model.h5')
scaler_load = joblib.load('scaler.sav') # Load the correct scaler
# Flask app initialization
app = Flask(__name__)
app.config["SECRET_KEY"] = os.urandom(24)
app.config["DEBUG"] = True
def validasi_inputan(form_data):
errors = {}
# Validasi temp_1, temp_2, temp_3
for field in ["temp_1", "temp_2", "temp_3"]:
if not form_data.get(field):
errors[field] = f"{field} tidak boleh kosong."
else:
try:
float(form_data.get(field))
except ValueError:
errors[field] = f"{field} harus berupa angka."
# Validasi feelslike_1, feelslike_2, feelslike_3
for field in ["feelslike_1", "feelslike_2", "feelslike_3"]:
if not form_data.get(field):
errors[field] = f"{field} tidak boleh kosong."
else:
try:
float(form_data.get(field))
except ValueError:
errors[field] = f"{field} harus berupa angka."
return errors
def validate_data(record):
errors = {}
# Validasi rentang nilai (15 - 50 untuk suhu)
for key, value in record.items():
if value < 15 or value > 50:
errors[key] = f"{key} harus diantara 15 dan 50."
return errors
@app.route("/", methods=["GET", "POST"])
def index():
prediction = None
errors = {}
predictions_list = []
if request.method == "POST":
# Validasi input kosong
errors = validasi_inputan(request.form)
if not errors:
record = {
"temp_1": float(request.form.get("temp_1")),
"temp_2": float(request.form.get("temp_2")),
"temp_3": float(request.form.get("temp_3")),
"feelslike_1": float(request.form.get("feelslike_1")),
"feelslike_2": float(request.form.get("feelslike_2")),
"feelslike_3": float(request.form.get("feelslike_3")),
}
# Validasi rentang nilai
errors = validate_data(record)
if not errors:
# Input data untuk prediksi
input_data = np.array([
[record["temp_1"], record["feelslike_1"]],
[record["temp_2"], record["feelslike_2"]],
[record["temp_3"], record["feelslike_3"]]
])
# Scaling input data
input_data_scaled = scaler_load.transform(input_data)
# Prediksi untuk 5 periode ke depan
last_input_scaled = input_data_scaled.copy()
for _ in range(5): # Prediksi 5 periode
prediction_normalized = model_load.predict(last_input_scaled.reshape(1, 3, 2))
prediction_denormalized = scaler_load.inverse_transform(prediction_normalized)
predictions_list.append(prediction_denormalized.flatten())
# Update input dengan prediksi terbaru
last_input_scaled = np.append(last_input_scaled[1:], prediction_normalized, axis=0)
return render_template('index.html', prediction=predictions_list, errors=errors, record=request.form)
# FastAPI app to mount Flask app
app = FastAPI()
# Mount Flask app inside FastAPI using WSGIMiddleware
app.mount("/", WSGIMiddleware(app))