Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,566 Bytes
5ed9923 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 |
import os
from plyfile import PlyData, PlyElement
from scipy.spatial.transform import Rotation
import einops
import numpy as np
import torch
import torchvision
import trimesh
import lightning as L
import utils.loss_mask as loss_mask
from src.mast3r_src.dust3r.dust3r.viz import OPENGL, pts3d_to_trimesh, cat_meshes
class SaveBatchData(L.Callback):
'''A Lightning callback that occasionally saves batch inputs and outputs to disk.
It is not critical to the training process, and can be disabled if unwanted.'''
def __init__(self, save_dir, train_save_interval=100, val_save_interval=100, test_save_interval=100):
self.save_dir = save_dir
self.train_save_interval = train_save_interval
self.val_save_interval = val_save_interval
self.test_save_interval = test_save_interval
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.train_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('train', trainer, pl_module, batch, batch_idx)
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.val_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('val', trainer, pl_module, batch, batch_idx)
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx):
if batch_idx % self.test_save_interval == 0 and trainer.global_rank == 0:
self.save_batch_data('test', trainer, pl_module, batch, batch_idx)
def save_batch_data(self, prefix, trainer, pl_module, batch, batch_idx):
print(f'Saving {prefix} data at epoch {trainer.current_epoch} and batch {batch_idx}')
# Run the batch through the model again
_, _, h, w = batch["context"][0]["img"].shape
view1, view2 = batch['context']
pred1, pred2 = pl_module.forward(view1, view2)
color, depth = pl_module.decoder(batch, pred1, pred2, (h, w))
mask = loss_mask.calculate_loss_mask(batch)
# Save the data
save_dir = os.path.join(
self.save_dir,
f"{prefix}_epoch_{trainer.current_epoch}_batch_{batch_idx}"
)
log_batch_files(batch, color, depth, mask, view1, view2, pred1, pred2, save_dir)
def save_as_ply(pred1, pred2, save_path):
"""Save the 3D Gaussians as a point cloud in the PLY format.
Adapted loosely from PixelSplat"""
def construct_list_of_attributes(num_rest: int) -> list[str]:
'''Construct a list of attributes for the PLY file format. This
corresponds to the attributes used by online readers, such as
https://niujinshuchong.github.io/mip-splatting-demo/index.html'''
attributes = ["x", "y", "z", "nx", "ny", "nz"]
for i in range(3):
attributes.append(f"f_dc_{i}")
for i in range(num_rest):
attributes.append(f"f_rest_{i}")
attributes.append("opacity")
for i in range(3):
attributes.append(f"scale_{i}")
for i in range(4):
attributes.append(f"rot_{i}")
return attributes
def covariance_to_quaternion_and_scale(covariance):
'''Convert the covariance matrix to a four dimensional quaternion and
a three dimensional scale vector'''
# Perform singular value decomposition
U, S, V = torch.linalg.svd(covariance)
# The scale factors are the square roots of the eigenvalues
scale = torch.sqrt(S)
scale = scale.detach().cpu().numpy()
# The rotation matrix is U*Vt
rotation_matrix = torch.bmm(U, V.transpose(-2, -1))
rotation_matrix_np = rotation_matrix.detach().cpu().numpy()
# Use scipy to convert the rotation matrix to a quaternion
rotation = Rotation.from_matrix(rotation_matrix_np)
quaternion = rotation.as_quat()
return quaternion, scale
# Collect the Gaussian parameters
means = torch.stack([pred1["pts3d"], pred2["pts3d_in_other_view"]], dim=1)
covariances = torch.stack([pred1["covariances"], pred2["covariances"]], dim=1)
harmonics = torch.stack([pred1["sh"], pred2["sh"]], dim=1)[..., 0] # Only use the first harmonic
opacities = torch.stack([pred1["opacities"], pred2["opacities"]], dim=1)
# Rearrange the tensors to the correct shape
means = einops.rearrange(means[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
covariances = einops.rearrange(covariances[0], "v h w i j -> (v h w) i j")
harmonics = einops.rearrange(harmonics[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
opacities = einops.rearrange(opacities[0], "view h w xyz -> (view h w) xyz").detach().cpu().numpy()
# Convert the covariance matrices to quaternions and scales
rotations, scales = covariance_to_quaternion_and_scale(covariances)
# Construct the attributes
rest = np.zeros_like(means)
attributes = np.concatenate((means, rest, harmonics, opacities, np.log(scales), rotations), axis=-1)
dtype_full = [(attribute, "f4") for attribute in construct_list_of_attributes(0)]
elements = np.empty(attributes.shape[0], dtype=dtype_full)
elements[:] = list(map(tuple, attributes))
# Save the point cloud
point_cloud = PlyElement.describe(elements, "vertex")
scene = PlyData([point_cloud])
scene.write(save_path)
def save_3d(view1, view2, pred1, pred2, save_dir, as_pointcloud=True, all_points=True):
"""Save the 3D points as a point cloud or as a mesh. Adapted from DUSt3R"""
os.makedirs(save_dir, exist_ok=True)
batch_size = pred1["pts3d"].shape[0]
views = [view1, view2]
for b in range(batch_size):
pts3d = [pred1["pts3d"][b].cpu().numpy()] + [pred2["pts3d_in_other_view"][b].cpu().numpy()]
imgs = [einops.rearrange(view["original_img"][b], "c h w -> h w c").cpu().numpy() for view in views]
mask = [view["valid_mask"][b].cpu().numpy() for view in views]
# Treat all pixels as valid, because we want to render the entire viewpoint
if all_points:
mask = [np.ones_like(m) for m in mask]
# Construct the scene from the 3D points as a point cloud or as a mesh
scene = trimesh.Scene()
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
save_path = os.path.join(save_dir, f"{b}.ply")
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
save_path = os.path.join(save_dir, f"{b}.glb")
# Save the scene
scene.export(file_obj=save_path)
@torch.no_grad()
def log_batch_files(batch, color, depth, mask, view1, view2, pred1, pred2, save_dir, should_save_3d=False):
'''Save all the relevant debug files for a batch'''
os.makedirs(save_dir, exist_ok=True)
# Save the 3D Gaussians as a .ply file
save_as_ply(pred1, pred2, os.path.join(save_dir, f"gaussians.ply"))
# Save the 3D points as a point cloud and as a mesh (disabled)
if should_save_3d:
save_3d(view1, view2, pred1, pred2, os.path.join(save_dir, "3d_mesh"), as_pointcloud=False)
save_3d(view1, view2, pred1, pred2, os.path.join(save_dir, "3d_pointcloud"), as_pointcloud=True)
# Save the color, depth and valid masks for the input context images
context_images = torch.stack([view["img"] for view in batch["context"]], dim=1)
context_original_images = torch.stack([view["original_img"] for view in batch["context"]], dim=1)
context_depthmaps = torch.stack([view["depthmap"] for view in batch["context"]], dim=1)
context_valid_masks = torch.stack([view["valid_mask"] for view in batch["context"]], dim=1)
for b in range(min(context_images.shape[0], 4)):
torchvision.utils.save_image(context_images[b], os.path.join(save_dir, f"sample_{b}_img_context.jpg"))
torchvision.utils.save_image(context_original_images[b], os.path.join(save_dir, f"sample_{b}_original_img_context.jpg"))
torchvision.utils.save_image(context_depthmaps[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_depthmap.jpg"), normalize=True)
torchvision.utils.save_image(context_valid_masks[b, :, None, ...].float(), os.path.join(save_dir, f"sample_{b}_valid_mask_context.jpg"), normalize=True)
# Save the color and depth images for the target images
target_original_images = torch.stack([view["original_img"] for view in batch["target"]], dim=1)
target_depthmaps = torch.stack([view["depthmap"] for view in batch["target"]], dim=1)
context_valid_masks = torch.stack([view["valid_mask"] for view in batch["context"]], dim=1)
for b in range(min(target_original_images.shape[0], 4)):
torchvision.utils.save_image(target_original_images[b], os.path.join(save_dir, f"sample_{b}_original_img_target.jpg"))
torchvision.utils.save_image(target_depthmaps[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_depthmap_target.jpg"), normalize=True)
# Save the rendered images and depths
for b in range(min(color.shape[0], 4)):
torchvision.utils.save_image(color[b, ...], os.path.join(save_dir, f"sample_{b}_rendered_color.jpg"))
if depth is not None:
for b in range(min(color.shape[0], 4)):
torchvision.utils.save_image(depth[b, :, None, ...], os.path.join(save_dir, f"sample_{b}_rendered_depth.jpg"), normalize=True)
# Save the loss masks
for b in range(min(mask.shape[0], 4)):
torchvision.utils.save_image(mask[b, :, None, ...].float(), os.path.join(save_dir, f"sample_{b}_loss_mask.jpg"), normalize=True)
# Save the masked target and rendered images
target_original_images = torch.stack([view["original_img"] for view in batch["target"]], dim=1)
masked_target_original_images = target_original_images * mask[..., None, :, :]
masked_predictions = color * mask[..., None, :, :]
for b in range(min(target_original_images.shape[0], 4)):
torchvision.utils.save_image(masked_target_original_images[b], os.path.join(save_dir, f"sample_{b}_masked_original_img_target.jpg"))
torchvision.utils.save_image(masked_predictions[b], os.path.join(save_dir, f"sample_{b}_masked_rendered_color.jpg")) |