brayden-gg
switched from global vars to State
1b7b649
raw
history blame
15.8 kB
import torch
import numpy as np
from helper import *
from config.GlobalVariables import *
from SynthesisNetwork import SynthesisNetwork
from DataLoader import DataLoader
import convenience
import gradio as gr
def update_chosen_writers(writer1, writer2, weight, words, all_loaded_data):
net.clamp_mdn = 0
chosen_writers = [int(writer1.split(" ")[1]), int(writer2.split(" ")[1])]
all_loaded_data = []
for writer_id in chosen_writers:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data.append(loaded_data)
writer_mean_Ws = []
for loaded_data in all_loaded_data:
mean_global_W = convenience.get_mean_global_W(net, loaded_data, device)
writer_mean_Ws.append(mean_global_W.detach())
return gr.Slider.update(label=f"{writer1} vs. {writer2}"), chosen_writers, writer_mean_Ws, *update_writer_word(" ".join(words), writer_mean_Ws, all_loaded_data, weight)
def update_writer_word(target_word, writer_mean_Ws, all_loaded_data, writer_weight, device="cpu"):
words = []
for word in target_word.split(" "):
if len(word) > 0:
words.append(word)
word_Ws = []
word_Cs = []
for word in words:
writer_Ws, writer_Cs = convenience.get_DSD(net, word, writer_mean_Ws, all_loaded_data, device)
word_Ws.append(writer_Ws)
word_Cs.append(writer_Cs)
if len(words) == 0:
word_Ws.append(torch.tensor([]))
word_Cs.append(torch.tensor([]))
return words, word_Ws, word_Cs, *update_writer_slider(writer_weight, words, word_Ws, word_Cs)
def update_writer_slider(weight, words, all_word_Ws, all_word_Cs):
weights = [1 - weight, weight]
net.clamp_mdn = 0
svg = convenience.draw_words_svg(words, all_word_Ws, all_word_Cs, weights, net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_writer_download(writer_svg):
writer_svg.saveas("./DSD_writer_interpolation.svg")
return gr.File.update(value="./DSD_writer_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for character blend
def update_blend_chars(c1, c2, weight, char_Ws):
blend_chars = [c1, c2]
char_Cs = torch.zeros(1, 2, convenience.L, convenience.L)
for i in range(2): # get corners of grid
_, char_matrix = convenience.get_DSD(net, blend_chars[i], default_mean_global_W, [default_loaded_data], device)
char_Cs[:, i, :, :] = char_matrix
return gr.Slider.update(label=f"'{c1}' vs. '{c2}'"), char_Cs.detach(), blend_chars, *update_char_slider(weight, char_Ws, char_Cs, blend_chars)
def update_char_slider(weight, char_Ws, char_Cs, blend_chars):
"""Generates an image of handwritten text based on target_sentence"""
net.clamp_mdn = 0
character_weights = [1 - weight, weight]
all_W_c = convenience.get_character_blend_W_c(character_weights, char_Ws, char_Cs)
all_commands = convenience.get_commands(net, blend_chars[0], all_W_c)
svg = convenience.commands_to_svg(all_commands, 750, 160, 375)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), weight, svg
def update_char_download(char_svg):
char_svg.saveas("./DSD_char_interpolation.svg")
return gr.File.update(value="./DSD_char_interpolation.svg", visible=True), gr.Button.update(visible=False)
# for MDN
def update_mdn_word(target_word, scale_sd, clamp_mdn):
mdn_words = []
for word in target_word.split(" "):
mdn_words.append(word)
all_word_mdn_Ws = []
all_word_mdn_Cs = []
for word in mdn_words:
all_writer_Ws, all_writer_Cs = convenience.get_DSD(net, word, default_mean_global_W, [default_loaded_data], device)
all_word_mdn_Ws.append(all_writer_Ws)
all_word_mdn_Cs.append(all_writer_Cs)
return mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, *sample_mdn(scale_sd, clamp_mdn, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs)
def sample_mdn(maxs, maxr, mdn_words, all_word_mdn_Ws, all_word_mdn_Cs):
net.clamp_mdn = maxr
net.scale_sd = maxs
svg = convenience.draw_words_svg(mdn_words, all_word_mdn_Ws, all_word_mdn_Cs, [1], net)
return gr.HTML.update(value=svg.tostring()), gr.File.update(visible=False), gr.Button.update(visible=True), maxr, maxs, svg
def update_mdn_download(mdn_svg):
mdn_svg.saveas("./DSD_add_randomness.svg")
return gr.File.update(value="./DSD_add_randomness.svg", visible=True), gr.Button.update(visible=False)
device = 'cpu'
num_samples = 10
net = SynthesisNetwork(weight_dim=256, num_layers=3).to(device)
if not torch.cuda.is_available():
net.load_state_dict(torch.load('./model/250000.pt', map_location=torch.device(device))["model_state_dict"])
dl = DataLoader(num_writer=1, num_samples=10, divider=5.0, datadir='./data/writers')
writer_options = [5, 14, 15, 16, 17, 22, 25, 80, 120, 137, 147, 151]
all_loaded_data_DEFAULT = []
chosen_writers_DEFAULT = [120, 80]
avail_char = "0 1 2 3 4 5 6 7 8 9 a b c d e f g h i j k l m n o p q r s t u v w x y z A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ! ? \" ' * + - = : ; , . < > \ / [ ] ( ) # $ % &"
avail_char_list = avail_char.split(" ")
for writer_id in chosen_writers_DEFAULT:
loaded_data = dl.next_batch(TYPE='TRAIN', uid=writer_id, tids=list(range(num_samples)))
all_loaded_data_DEFAULT.append(loaded_data)
default_loaded_data = all_loaded_data_DEFAULT[-1]
default_mean_global_W = convenience.get_mean_global_W(net, default_loaded_data, device)
# data for writer interpolation
writer_words_DEFAULT = ["hello", "world"]
writer_mean_Ws_DEFAULT = []
writer_all_word_Ws_DEFAULT = []
writer_all_word_Cs_DEFAULT = []
writer_weight_DEFAULT = 0.7
writer_svg_DEFAULT = None
# data for char interpolation
char_chosen_DEFAULT = ["y", "s"]
char_mean_global_W_DEFAULT = None
char_weight_DEFAULT = 0.7
char_Ws_DEFAULT = default_mean_global_W.reshape(1, 1, convenience.L)
char_Cs_DEFAULT = None
char_svg_DEFAULT = None
# # data for MDN
mdn_words_DEFAULT = ["hello", "world"]
all_word_mdn_Ws_DEFAULT = None
all_word_mdn_Cs_DEFAULT = None
clamp_mdn_DEFAULT = 0.5
scale_sd_DEFAULT = 1
mdn_svg_DEFAULT = None
_wrds, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT, _html, _file, _btn, _wt, _svg = update_writer_word(" ".join(writer_words_DEFAULT), writer_mean_Ws_DEFAULT, all_loaded_data_DEFAULT, writer_weight_DEFAULT)
_sldr, _wrtrs, writer_mean_Ws_DEFAULT, _wrds, _waww, _wawc, _html, _file, _btn, _wt, writer_svg_DEFAULT = update_chosen_writers(f"Writer {chosen_writers_DEFAULT[0]}", f"Writer {chosen_writers_DEFAULT[1]}", writer_weight_DEFAULT, writer_words_DEFAULT, all_loaded_data_DEFAULT)
_wrds, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT, _html, _file, _btn, _maxr, _maxs, mdn_svg_DEFAULT = update_mdn_word(" ".join(mdn_words_DEFAULT), scale_sd_DEFAULT, clamp_mdn_DEFAULT)
_sldr, char_Cs_DEFAULT, _chrs, _html, _file, _btn, _wght, char_svg_DEFAULT = update_blend_chars(*char_chosen_DEFAULT, char_weight_DEFAULT, char_Ws_DEFAULT)
with gr.Blocks() as demo:
all_loaded_data_var = gr.State(all_loaded_data_DEFAULT)
chosen_writers_var = gr.State(chosen_writers_DEFAULT)
# data for writer interpolation
writer_words_var = gr.State(writer_words_DEFAULT)
writer_mean_Ws_var = gr.State(writer_mean_Ws_DEFAULT)
writer_all_word_Ws_var = gr.State([e.detach() for e in writer_all_word_Ws_DEFAULT])
writer_all_word_Cs_var = gr.State([e.detach() for e in writer_all_word_Cs_DEFAULT])
writer_weight_var = gr.State(writer_weight_DEFAULT)
writer_svg_var = gr.State(writer_svg_DEFAULT)
# data for char interpolation
char_chosen_var = gr.State(char_chosen_DEFAULT)
char_mean_global_W_var = gr.State(char_mean_global_W_DEFAULT)
char_weight_var = gr.State(char_weight_DEFAULT)
char_Ws_var = gr.State(char_Ws_DEFAULT.detach())
char_Cs_var = gr.State(char_Cs_DEFAULT.detach())
char_svg_var = gr.State(char_svg_DEFAULT)
# # data for MDN
mdn_words_var = gr.State(mdn_words_DEFAULT)
all_word_mdn_Ws_var = gr.State([e.detach() for e in all_word_mdn_Ws_DEFAULT])
all_word_mdn_Cs_var = gr.State([e.detach() for e in all_word_mdn_Cs_DEFAULT])
clamp_mdn_var = gr.State(clamp_mdn_DEFAULT)
scale_sd_var = gr.State(scale_sd_DEFAULT)
mdn_svg_var = gr.State(mdn_svg_DEFAULT)
with gr.Tabs():
with gr.TabItem("Blend Writers"):
target_word = gr.Textbox(label="Target Word", value=" ".join(writer_words_DEFAULT), max_lines=1)
with gr.Row():
left_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 0]
right_ratio_options = ["Style " + str(id) for i, id in enumerate(writer_options) if i % 2 == 1]
with gr.Column():
writer1 = gr.Radio(left_ratio_options, value="Style 120", label="Style for first writer")
with gr.Column():
writer2 = gr.Radio(right_ratio_options, value="Style 80", label="Style for second writer")
with gr.Row():
writer_slider = gr.Slider(0, 1, value=writer_weight_DEFAULT, label="Style 120 vs. Style 80")
with gr.Row():
writer_default_image = update_writer_slider(writer_weight_DEFAULT, writer_words_DEFAULT, writer_all_word_Ws_DEFAULT, writer_all_word_Cs_DEFAULT)
writer_output = gr.HTML(writer_default_image[0]["value"])
with gr.Row():
writer_download_btn = gr.Button("Save to SVG file")
writer_download_btn.style(full_width="true")
writer_download = gr.File(interactive=False, show_label=False, visible=False)
writer_slider.change(fn=update_writer_slider,
inputs=[writer_slider, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var],
outputs=[writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
target_word.submit(fn=update_writer_word,
inputs=[target_word, writer_mean_Ws_var, all_loaded_data_var, writer_weight_var],
outputs=[writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var], show_progress=False)
writer1.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer2.change(fn=update_chosen_writers,
inputs=[writer1, writer2, writer_weight_var, writer_words_var, all_loaded_data_var],
outputs=[writer_slider, chosen_writers_var, writer_mean_Ws_var, writer_words_var, writer_all_word_Ws_var, writer_all_word_Cs_var, writer_output, writer_download, writer_download_btn, writer_weight_var, writer_svg_var])
writer_download_btn.click(fn=update_writer_download,
inputs=[writer_svg_var],
outputs=[writer_download, writer_download_btn])
with gr.TabItem("Blend Characters"):
with gr.Row():
with gr.Column():
char1 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[0], label="Character 1")
with gr.Column():
char2 = gr.Dropdown(choices=avail_char_list, value=char_chosen_DEFAULT[1], label="Character 2")
with gr.Row():
char_slider = gr.Slider(0, 1, value=char_weight_DEFAULT, label=f"'{char_chosen_DEFAULT[0]}' vs. '{char_chosen_DEFAULT[1]}'")
with gr.Row():
char_default_image = update_char_slider(char_weight_DEFAULT, char_Ws_DEFAULT, char_Cs_DEFAULT, char_chosen_DEFAULT)
char_output = gr.HTML(char_default_image[0]["value"])
with gr.Row():
char_download_btn = gr.Button("Save to SVG file")
char_download_btn.style(full_width="true")
char_download = gr.File(interactive=False, show_label=False, visible=False)
char_slider.change(fn=update_char_slider,
inputs=[char_slider, char_Ws_var, char_Cs_var, char_chosen_var],
outputs=[char_output, char_download, char_download_btn, char_weight_var, char_svg_var], show_progress=False)
char1.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char2.change(fn=update_blend_chars,
inputs=[char1, char2, char_weight_var, char_Ws_var],
outputs=[char_slider, char_Cs_var, char_chosen_var, char_output, char_download, char_download_btn, char_weight_var, char_svg_var])
char_download_btn.click(fn=update_char_download,
inputs=[char_svg_var],
outputs=[char_download, char_download_btn], show_progress=True)
with gr.TabItem("Add Randomness"):
mdn_word = gr.Textbox(label="Target Word", value=" ".join(mdn_words_DEFAULT), max_lines=1)
with gr.Row():
with gr.Column():
max_rand = gr.Slider(0, 1, value=clamp_mdn_DEFAULT, label="Maximum Randomness")
with gr.Column():
scale_rand = gr.Slider(0, 3, value=scale_sd_DEFAULT, label="Scale of Randomness")
with gr.Row():
mdn_sample_button = gr.Button(value="Resample")
with gr.Row():
default_im = sample_mdn(scale_sd_DEFAULT, clamp_mdn_DEFAULT, mdn_words_DEFAULT, all_word_mdn_Ws_DEFAULT, all_word_mdn_Cs_DEFAULT)
mdn_output = gr.HTML(default_im[0]["value"])
with gr.Row():
randomness_download_btn = gr.Button("Save to SVG file")
randomness_download = gr.File(interactive=False, show_label=False, visible=False)
max_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
scale_rand.change(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_sample_button.click(fn=sample_mdn,
inputs=[scale_rand, max_rand, mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var],
outputs=[mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
mdn_word.submit(fn=update_mdn_word,
inputs=[mdn_word, scale_sd_var, clamp_mdn_var],
outputs=[mdn_words_var, all_word_mdn_Ws_var, all_word_mdn_Cs_var, mdn_output, randomness_download, randomness_download_btn, clamp_mdn_var, scale_sd_var, mdn_svg_var], show_progress=False)
randomness_download_btn.click(fn=update_mdn_download,
inputs=[mdn_svg_var],
outputs=[randomness_download, randomness_download_btn])
randomness_download_btn.style(full_width="true")
demo.launch()