File size: 1,921 Bytes
d0d5a73
 
 
 
1200764
87551e4
d0d5a73
 
 
 
 
 
 
 
 
 
392eb9f
d0d5a73
392eb9f
d0d5a73
 
 
 
 
 
 
 
 
392eb9f
d0d5a73
 
 
 
392eb9f
d0d5a73
392eb9f
6081fa7
392eb9f
e75ec7f
392eb9f
 
d0d5a73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
import streamlit as st
import time
from transformers import pipeline
import torch
trust_remote_code=True
st.markdown('## Text-generation gpt Muse from Breadlicker45')

@st.cache(allow_output_mutation=True, suppress_st_warning =True, show_spinner=False)
def get_model():
    return pipeline('text-generation', model=model, do_sample=True)
    
col1, col2 = st.columns([2,1])

with st.sidebar:
    st.markdown('## Model Parameters')

    max_length = st.slider('Max text length', 0, 500, 80)

    num_beams = st.slider('N° tree beams search', 2, 15,  2)

    early_stopping = st.selectbox(
     'Early stopping text generation',
     ('True', 'False'), key={'True' : True, 'False': False}, index=0)

    no_ngram_repeat = st.slider('Max repetition limit', 1, 5,  2)
    
with col1:
    prompt= st.text_area('Your prompt here',
        '''2623 2619 3970 3976 2607 3973 2735 3973 2598 3985 2726 3973 2607 4009 2735 3973 2598 3973 2726 3973 2607 3973 2735 4009''') 
        
with col2:
    select_model = st.radio(
        "Select the model to use:",
        ('MuseWeb', 'MusePy', 'MuseNeo'), index = 2)

    if select_model == 'MuseWeb':
        model = 'breadlicker45/museweb'
    elif select_model == 'MusePy':
        model = 'breadlicker45/MusePy'
    elif select_model == 'MuseNeo':
        model = 'breadlicker45/MuseNeo'   

    with st.spinner('Loading Model... (This may take a while)'):
        generator = get_model()    
        st.success('Model loaded correctly!')
     
gen = st.info('Generating text...')
answer = generator(prompt,
                       max_length=max_length, no_repeat_ngram_size=no_ngram_repeat,
                        early_stopping=early_stopping, num_beams=num_beams)                      
gen.empty()                      
                       
lst = answer[0]['generated_text']
   
t = st.empty()
for i in range(len(lst)):
    t.markdown("#### %s" % lst[0:i])
    time.sleep(0.04)