Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
from transformers import pipeline | |
import torch | |
trust_remote_code=True | |
st.markdown('## Text-generation gpt Muse from Breadlicker45') | |
use_auth_token=True | |
def get_model(): | |
return pipeline('text-generation', model=model, do_sample=True) | |
col1, col2 = st.columns([2,1]) | |
with st.sidebar: | |
st.markdown('## Model Parameters') | |
max_length = st.slider('Max text length', 80, 2000, 80) | |
min_length = st.slider('Min text length', 80, 500, 80) | |
num_beams = st.slider('N° tree beams search', 1, 15, 1) | |
top_k = st.slider('top_k', 1, 10, 1) | |
temperature = st.slider('temperature', 0.0, 1.0, 0.5, 0.1) | |
early_stopping = st.selectbox( | |
'Early stopping text generation', | |
('True', 'False'), key={'True' : True, 'False': False}, index=0) | |
no_ngram_repeat = st.slider('Max repetition limit', 1, 3, 1) | |
st.markdown('## how to convert it into midi. go to this site https://mrcheeze.github.io/musenet-midi/ and then paste the numbers/musenet encoders you get from the ai into the big box and then click export midi') | |
with col1: | |
prompt= st.text_area('Your prompt here', | |
'''2623 2619 3970 3976 2607 3973 2735 3973 2598 3985 2726 3973 2607 4009 2735 3973 2598 3973 2726 3973 2607 3973 2735 4009''') | |
with col2: | |
select_model = st.radio( | |
"Select the model to use:", | |
('MusePy', 'MuseMini', 'MusePy-1-1', 'MuseCan', 'MuseCan-1-2'), index = 4) | |
if select_model == 'MusePy': | |
model = 'breadlicker45/MusePy' | |
elif select_model == 'MuseNeo': | |
model = 'BreadAi/MuseMini' | |
elif select_model == 'MusePy-1-1': | |
model = 'BreadAi/MusePy-1-1' | |
elif select_model == 'MuseCan': | |
model = 'BreadAi/MuseCan' | |
elif select_model == 'MuseCan-1-2': | |
model = 'BreadAi/MuseCan-1-2' | |
with st.spinner('Loading Model... (This may take a while)'): | |
generator = get_model() | |
st.success('Model loaded correctly!') | |
gen = st.info('Generating text...') | |
answer = generator(prompt,max_length=max_length, no_repeat_ngram_size=no_ngram_repeat,early_stopping=early_stopping, num_beams=num_beams, min_length=min_length, temperature=temperature, top_k=top_k) | |
gen.empty() | |
lst = answer[0]['generated_text'] | |
t = st.empty() | |
for i in range(len(lst)): | |
t.markdown("#### %s" % lst[0:i]) | |
time.sleep(0.04) |