File size: 13,790 Bytes
2f27e32
 
fd012a7
86f7f0a
 
 
 
 
1079729
f9dccaf
 
 
86f7f0a
fd012a7
 
 
 
2f27e32
 
 
 
 
f9dccaf
 
 
2f27e32
 
f9dccaf
 
2f27e32
 
 
 
 
 
 
 
f9dccaf
2f27e32
 
f9dccaf
2f27e32
 
 
f9dccaf
 
2f27e32
 
f9dccaf
2f27e32
 
 
f9dccaf
 
2f27e32
 
 
 
 
f9dccaf
2f27e32
 
 
 
f9dccaf
2f27e32
 
 
 
fd012a7
 
f9dccaf
fd012a7
 
f9dccaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd012a7
 
f9dccaf
fd012a7
 
 
 
 
 
 
f9dccaf
fd012a7
 
f9dccaf
fd012a7
f9dccaf
 
 
 
 
 
 
 
 
fd012a7
f9dccaf
 
 
 
 
 
 
 
 
fd012a7
 
86f7f0a
2f27e32
 
 
fd012a7
2f27e32
fd012a7
f9dccaf
 
 
 
 
 
fd012a7
183a87e
1079729
 
 
2f27e32
1079729
 
 
0db6e6a
86f7f0a
 
 
0db6e6a
86f7f0a
 
0db6e6a
 
86f7f0a
 
0db6e6a
 
 
f9dccaf
 
 
 
 
86f7f0a
 
f9dccaf
86f7f0a
 
0db6e6a
86f7f0a
 
 
 
f9dccaf
 
 
 
 
86f7f0a
 
 
f9dccaf
 
 
 
 
 
 
 
 
86f7f0a
 
 
 
f9dccaf
86f7f0a
 
 
f9dccaf
86f7f0a
 
f9dccaf
 
 
 
 
 
 
86f7f0a
 
 
 
294c6ec
f9dccaf
 
 
 
 
 
 
 
 
 
 
 
86f7f0a
 
f9dccaf
 
86f7f0a
f9dccaf
 
 
 
 
 
 
294c6ec
 
86f7f0a
294c6ec
 
 
 
 
7406325
294c6ec
f9dccaf
294c6ec
86f7f0a
f9dccaf
 
 
 
 
 
86f7f0a
294c6ec
86f7f0a
 
0db6e6a
5bef524
f9dccaf
fd012a7
86f7f0a
294c6ec
2f27e32
86f7f0a
294c6ec
0db6e6a
f9dccaf
86f7f0a
f9dccaf
 
 
 
 
 
294c6ec
 
 
 
f9dccaf
294c6ec
 
 
 
 
 
 
 
f9dccaf
294c6ec
0db6e6a
f9dccaf
0db6e6a
f9dccaf
0db6e6a
 
f9dccaf
0db6e6a
86f7f0a
294c6ec
f9dccaf
86f7f0a
294c6ec
 
 
 
 
 
 
 
 
86f7f0a
294c6ec
 
86f7f0a
294c6ec
86f7f0a
f9dccaf
 
 
 
 
 
 
86f7f0a
 
5bef524
86f7f0a
 
294c6ec
 
86f7f0a
f9dccaf
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import json
from typing import Union, Dict, Any

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import tqdm
from peft import PeftConfig, LoraModel, load_peft_weights, set_peft_model_state_dict
from transformers import LlamaModel, Phi3Model
from transformers import LlamaConfig, Phi3Config
from transformers import DynamicCache, PretrainedConfig, PreTrainedModel

from midi_tokenizer import MIDITokenizerV1, MIDITokenizerV2, MIDITokenizer

config_name_list = ["tv1-medium", "tv2-medium", "tv2o-medium", "tv2-large", "tv2o-large"]

class MIDIModelConfig(PretrainedConfig):
    model_type = "midi_model"

    def __init__(self,
                 tokenizer: Union[MIDITokenizerV1, MIDITokenizerV2, Dict]=None,
                 net_config: Union[LlamaConfig, Phi3Config, Dict]=None, 
                 net_token_config: Union[LlamaConfig, Phi3Config, Dict]=None,
                 model_type: str = "llama",
                 **kwargs):
        super().__init__(**kwargs)
        self.model_type = model_type
        
        if tokenizer:
            if isinstance(tokenizer, dict):
                self.tokenizer = MIDITokenizer(tokenizer["version"])
                self.tokenizer.set_optimise_midi(tokenizer["optimise_midi"])
            else:
                self.tokenizer = tokenizer
        else:
            self.tokenizer = MIDITokenizer()
            
        if net_config:
            if isinstance(net_config, dict):
                self.net_config = LlamaConfig(**net_config) if model_type == "llama" else Phi3Config(**net_config)
            else:
                self.net_config = net_config
        else:
            self.net_config = LlamaConfig() if model_type == "llama" else Phi3Config()
            
        if net_token_config:
            if isinstance(net_token_config, dict):
                self.net_token_config = LlamaConfig(**net_token_config) if model_type == "llama" else Phi3Config(**net_token_config)
            else:
                self.net_token_config = net_token_config
        else:
            self.net_token_config = LlamaConfig() if model_type == "llama" else Phi3Config()
            
        self.n_embd = self.net_token_config.hidden_size

    def to_dict(self) -> Dict[str, Any]:
        d = super().to_dict()
        d["tokenizer"] = self.tokenizer.to_dict()
        d["model_type"] = self.model_type
        return d

    def __str__(self):
        d = {
            "model_type": self.model_type,
            "net": self.net_config.to_json_string(use_diff=False),
            "net_token": self.net_token_config.to_json_string(use_diff=False)
        }
        return json.dumps(d, indent=4)

    @staticmethod
    def get_config(tokenizer_ver="v2", optimise_midi=True, n_layer=12, n_head=16, n_embd=1024, n_inner=4096, model_type="llama"):
        tokenizer = MIDITokenizer(tokenizer_ver)
        tokenizer.set_optimise_midi(optimise_midi)
        
        config_class = LlamaConfig if model_type == "llama" else Phi3Config
        
        net_config = config_class(
            vocab_size=tokenizer.vocab_size,
            hidden_size=n_embd, 
            num_attention_heads=n_head,
            num_hidden_layers=n_layer, 
            intermediate_size=n_inner,
            pad_token_id=tokenizer.pad_id, 
            max_position_embeddings=4096,
            use_cache=False
        )
        
        net_token_config = config_class(
            vocab_size=tokenizer.vocab_size,
            hidden_size=n_embd, 
            num_attention_heads=n_head // 4,
            num_hidden_layers=n_layer // 4, 
            intermediate_size=n_inner // 4,
            pad_token_id=tokenizer.pad_id, 
            max_position_embeddings=4096,
            use_cache=False
        )
        
        return MIDIModelConfig(tokenizer, net_config, net_token_config, model_type=model_type)

    @staticmethod
    def from_name(name="tv2o-medium", model_type="llama"):
        tv, size = name.split("-")
        tv = tv[1:]
        if tv[-1] == "o":
            o = True
            tv = tv[:-1]
        else:
            o = False
            
        if tv not in ["v1", "v2"]:
            raise ValueError(f"Unknown tokenizer version {tv}")
            
        if size == "medium":
            return MIDIModelConfig.get_config(
                tokenizer_ver=tv, 
                optimise_midi=o,
                n_layer=12, 
                n_head=16, 
                n_embd=1024, 
                n_inner=4096,
                model_type=model_type
            )
        elif size == "large":
            return MIDIModelConfig.get_config(
                tokenizer_ver=tv, 
                optimise_midi=o,
                n_layer=24, 
                n_head=16, 
                n_embd=1024, 
                n_inner=4096,
                model_type=model_type
            )
        else:
            raise ValueError(f"Unknown model size {size}")

class MIDIModel(PreTrainedModel):
    config_class = MIDIModelConfig

    def __init__(self, config: MIDIModelConfig, *args, **kwargs):
        super(MIDIModel, self).__init__(config, *args, **kwargs)
        self.tokenizer = config.tokenizer
        
        # Initialize the appropriate model type
        model_class = LlamaModel if config.model_type == "llama" else Phi3Model
        self.net = model_class(config.net_config)
        self.net_token = model_class(config.net_token_config)
        
        self.lm_head = nn.Linear(config.n_embd, self.tokenizer.vocab_size, bias=False)

    def load_merge_lora(self, model_id):
        peft_config = PeftConfig.from_pretrained(model_id)
        model = LoraModel(self, peft_config, adapter_name="default")
        adapter_state_dict = load_peft_weights(model_id, device=str(self.device))
        set_peft_model_state_dict(self, adapter_state_dict, "default")
        return model.merge_and_unload()

    def forward_token(self, hidden_state=None, x=None, cache=None):
        """
        :param hidden_state: (batch_size, n_embd)
        :param x: (batch_size, token_sequence_length)
        :param cache: Cache
        :return: (batch_size, 1 + token_sequence_length, vocab_size)
        """
        if hidden_state is not None:
            hidden_state = hidden_state.unsqueeze(1)  # (batch_size, 1, n_embd)
        if x is not None:
            x = self.net_token.embed_tokens(x)
            if hidden_state is not None:
                x = torch.cat([hidden_state, x], dim=1)
            hidden_state = x
        hidden_state = self.net_token.forward(
            inputs_embeds=hidden_state,
            past_key_values=cache,
            use_cache=cache is not None
        ).last_hidden_state
        return self.lm_head(hidden_state)

    def forward(self, x, cache=None):
        """
        :param x: (batch_size, midi_sequence_length, token_sequence_length)
        :param cache: Cache
        :return: hidden (batch_size, midi_sequence_length, n_embd)
        """
        x = self.net.embed_tokens(x)
        x = x.sum(dim=-2)
        x = self.net.forward(
            inputs_embeds=x,
            past_key_values=cache,
            use_cache=cache is not None
        )
        return x.last_hidden_state

    def sample_top_p_k(self, probs, p, k, generator=None):
        """
        Sample from top-p and top-k filtered probability distribution
        
        :param probs: probability distribution
        :param p: top-p threshold
        :param k: top-k threshold
        :param generator: random number generator
        :return: sampled token indices
        """
        probs_sort, probs_idx = torch.sort(probs, dim=-1, descending=True)
        probs_sum = torch.cumsum(probs_sort, dim=-1)
        mask = probs_sum - probs_sort > p
        probs_sort[mask] = 0.0
        
        mask = torch.zeros(probs_sort.shape[-1], device=probs_sort.device)
        mask[:k] = 1
        probs_sort = probs_sort * mask
        
        probs_sort.div_(probs_sort.sum(dim=-1, keepdim=True))
        shape = probs_sort.shape
        
        next_token = torch.multinomial(
            probs_sort.reshape(-1, shape[-1]),
            num_samples=1,
            generator=generator
        ).reshape(*shape[:-1], 1)
        
        next_token = torch.gather(probs_idx, -1, next_token).reshape(*shape[:-1])
        return next_token

    @torch.inference_mode()
    def generate(self, prompt=None, batch_size=1, max_len=512, temp=1.0, top_p=0.98, top_k=20, generator=None):
        """
        Generate MIDI sequences
        
        :param prompt: optional input prompt
        :param batch_size: number of sequences to generate
        :param max_len: maximum sequence length
        :param temp: temperature for sampling
        :param top_p: top-p threshold for sampling
        :param top_k: top-k threshold for sampling
        :param generator: random number generator
        :return: generated sequences
        """
        tokenizer = self.tokenizer
        max_token_seq = tokenizer.max_token_seq
        
        # Initialize input tensor
        if prompt is None:
            input_tensor = torch.full(
                (1, max_token_seq),
                tokenizer.pad_id,
                dtype=torch.long,
                device=self.device
            )
            input_tensor[0, 0] = tokenizer.bos_id
            input_tensor = input_tensor.unsqueeze(0)
            input_tensor = torch.cat([input_tensor] * batch_size, dim=0)
        else:
            if len(prompt.shape) == 2:
                prompt = prompt[None, :]
                prompt = np.repeat(prompt, repeats=batch_size, axis=0)
            elif prompt.shape[0] == 1:
                prompt = np.repeat(prompt, repeats=batch_size, axis=0)
            elif len(prompt.shape) != 3 or prompt.shape[0] != batch_size:
                raise ValueError(f"invalid shape for prompt, {prompt.shape}")
                
            prompt = prompt[..., :max_token_seq]
            if prompt.shape[-1] < max_token_seq:
                prompt = np.pad(
                    prompt,
                    ((0, 0), (0, 0), (0, max_token_seq - prompt.shape[-1])),
                    mode="constant",
                    constant_values=tokenizer.pad_id
                )
            input_tensor = torch.from_numpy(prompt).to(dtype=torch.long, device=self.device)

        cur_len = input_tensor.shape[1]
        bar = tqdm.tqdm(desc="generating", total=max_len - cur_len)
        cache1 = DynamicCache()
        past_len = 0
        
        with bar:
            while cur_len < max_len:
                end = [False] * batch_size
                hidden = self.forward(input_tensor[:, past_len:], cache=cache1)[:, -1]
                next_token_seq = None
                event_names = [""] * batch_size
                cache2 = DynamicCache()
                
                for i in range(max_token_seq):
                    mask = torch.zeros(
                        (batch_size, tokenizer.vocab_size),
                        dtype=torch.int64,
                        device=self.device
                    )
                    
                    for b in range(batch_size):
                        if end[b]:
                            mask[b, tokenizer.pad_id] = 1
                            continue
                            
                        if i == 0:
                            mask[b, list(tokenizer.event_ids.values()) + [tokenizer.eos_id]] = 1
                        else:
                            param_names = tokenizer.events[event_names[b]]
                            if i > len(param_names):
                                mask[b, tokenizer.pad_id] = 1
                                continue
                            mask[b, tokenizer.parameter_ids[param_names[i - 1]]] = 1
                    
                    mask = mask.unsqueeze(1)
                    x = next_token_seq
                    
                    if i != 0:
                        # Use cache for non-first tokens
                        hidden = None
                        x = x[:, -1:]
                        
                    logits = self.forward_token(hidden, x, cache=cache2)[:, -1:]
                    scores = torch.softmax(logits / temp, dim=-1) * mask
                    samples = self.sample_top_p_k(scores, top_p, top_k, generator=generator)
                    
                    if i == 0:
                        next_token_seq = samples
                        for b in range(batch_size):
                            if end[b]:
                                continue
                            eid = samples[b].item()
                            if eid == tokenizer.eos_id:
                                end[b] = True
                            else:
                                event_names[b] = tokenizer.id_events[eid]
                    else:
                        next_token_seq = torch.cat([next_token_seq, samples], dim=1)
                        if all([len(tokenizer.events[event_names[b]]) == i for b in range(batch_size) if not end[b]]):
                            break

                if next_token_seq.shape[1] < max_token_seq:
                    next_token_seq = F.pad(
                        next_token_seq,
                        (0, max_token_seq - next_token_seq.shape[1]),
                        "constant",
                        value=tokenizer.pad_id
                    )
                    
                next_token_seq = next_token_seq.unsqueeze(1)
                input_tensor = torch.cat([input_tensor, next_token_seq], dim=1)
                past_len = cur_len
                cur_len += 1
                bar.update(1)

                if all(end):
                    break
                    
        return input_tensor.cpu().numpy()