import gradio import numpy as np import torch from hifi_gan_bwe import BandwidthExtender model = BandwidthExtender.from_pretrained("hifi-gan-bwe-05-d3abf04-vctk-48kHz") def extend(audio): fs, x = audio x = x.astype(np.float32) / 32767.0 with torch.no_grad(): y = model(torch.from_numpy(x), fs).numpy() fs = int(model.sample_rate) y = (y * 32767.0).astype(np.int16) return fs, y gradio.Interface( fn=extend, inputs="audio", outputs="audio", ).launch()