Spaces:
Running
Running
israelweiss
commited on
Commit
·
2d8c11a
1
Parent(s):
0d20806
no prompt button, api call to int
Browse files
app.py
CHANGED
@@ -1,26 +1,45 @@
|
|
1 |
import gradio as gr
|
2 |
-
import torch
|
3 |
import numpy as np
|
4 |
-
|
5 |
import os
|
6 |
-
import spaces
|
7 |
-
from PIL import Image
|
8 |
-
hf_token = os.environ.get("HF_TOKEN")
|
9 |
-
from diffusers import StableDiffusionXLInpaintPipeline, DDIMScheduler, UNet2DConditionModel
|
10 |
-
from diffusers import (
|
11 |
-
AutoencoderKL,
|
12 |
-
LCMScheduler,
|
13 |
-
)
|
14 |
-
from pipeline_controlnet_sd_xl import StableDiffusionXLControlNetPipeline
|
15 |
-
from controlnet import ControlNetModel, ControlNetConditioningEmbedding
|
16 |
-
import torch
|
17 |
-
import numpy as np
|
18 |
from PIL import Image
|
19 |
import requests
|
20 |
-
import PIL
|
21 |
from io import BytesIO
|
22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
ratios_map = {
|
26 |
0.5:{"width":704,"height":1408},
|
@@ -43,13 +62,6 @@ ratios_map = {
|
|
43 |
}
|
44 |
ratios = np.array(list(ratios_map.keys()))
|
45 |
|
46 |
-
image_transforms = transforms.Compose(
|
47 |
-
[
|
48 |
-
transforms.ToTensor(),
|
49 |
-
]
|
50 |
-
)
|
51 |
-
|
52 |
-
default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
|
53 |
|
54 |
|
55 |
def get_masked_image(image, image_mask, width, height):
|
@@ -77,25 +89,6 @@ def get_size(init_image):
|
|
77 |
|
78 |
return w,h
|
79 |
|
80 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
81 |
-
|
82 |
-
# Load, init model
|
83 |
-
controlnet = ControlNetModel().from_pretrained("briaai/DEV-ControlNetInpaintingFast", torch_dtype=torch.float16)
|
84 |
-
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
|
85 |
-
pipe = StableDiffusionXLControlNetPipeline.from_pretrained("briaai/BRIA-2.3", controlnet=controlnet.to(dtype=torch.float16), torch_dtype=torch.float16, vae=vae) #force_zeros_for_empty_prompt=False, # vae=vae)
|
86 |
-
|
87 |
-
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
88 |
-
pipe.load_lora_weights("briaai/BRIA-2.3-FAST-LORA")
|
89 |
-
pipe.fuse_lora()
|
90 |
-
|
91 |
-
pipe = pipe.to(device)
|
92 |
-
# pipe.enable_xformers_memory_efficient_attention()
|
93 |
-
|
94 |
-
# generator = torch.Generator(device='cuda').manual_seed(123456)
|
95 |
-
|
96 |
-
vae = pipe.vae
|
97 |
-
|
98 |
-
pipe.enable_model_cpu_offload()
|
99 |
|
100 |
def read_content(file_path: str) -> str:
|
101 |
"""read the content of target file
|
@@ -105,62 +98,19 @@ def read_content(file_path: str) -> str:
|
|
105 |
|
106 |
return content
|
107 |
|
108 |
-
|
109 |
-
def predict(dict, prompt="", negative_prompt = default_negative_prompt, guidance_scale=1.2, steps=12, seed=123456):
|
110 |
-
if negative_prompt == "":
|
111 |
-
negative_prompt = None
|
112 |
|
113 |
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
|
114 |
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
|
115 |
-
|
116 |
-
|
117 |
-
width, height = get_size(init_image)
|
118 |
-
|
119 |
-
init_image = init_image.resize((width, height))
|
120 |
-
mask = mask.resize((width, height))
|
121 |
-
|
122 |
-
|
123 |
-
masked_image, image_mask, masked_image_to_present = get_masked_image(init_image, mask, width, height)
|
124 |
-
masked_image_tensor = image_transforms(masked_image)
|
125 |
-
masked_image_tensor = (masked_image_tensor - 0.5) / 0.5
|
126 |
|
127 |
-
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
image_mask = np.array(image_mask)[:,:]
|
136 |
-
mask_tensor = torch.tensor(image_mask, dtype=torch.float32)[None, ...]
|
137 |
-
# binarize the mask
|
138 |
-
mask_tensor = torch.where(mask_tensor > 128.0, 255.0, 0)
|
139 |
-
|
140 |
-
mask_tensor = mask_tensor / 255.0
|
141 |
-
|
142 |
-
mask_tensor = mask_tensor.to(device="cuda")
|
143 |
-
mask_resized = torch.nn.functional.interpolate(mask_tensor[None, ...], size=(control_latents.shape[2], control_latents.shape[3]), mode='nearest')
|
144 |
-
# mask_resized = mask_resized.to(torch.float16)
|
145 |
-
masked_image = torch.cat([control_latents, mask_resized], dim=1)
|
146 |
-
|
147 |
-
generator = torch.Generator(device='cuda').manual_seed(int(seed))
|
148 |
-
|
149 |
-
output = pipe(prompt = prompt,
|
150 |
-
width=width,
|
151 |
-
height=height,
|
152 |
-
negative_prompt=negative_prompt,
|
153 |
-
image = masked_image, # control image V
|
154 |
-
init_image = init_image,
|
155 |
-
mask_image = mask_tensor,
|
156 |
-
guidance_scale = guidance_scale,
|
157 |
-
num_inference_steps=int(steps),
|
158 |
-
# strength=strength,
|
159 |
-
generator=generator,
|
160 |
-
controlnet_conditioning_sale=1.0)
|
161 |
-
|
162 |
-
torch.cuda.empty_cache
|
163 |
-
return output.images[0] #, gr.update(visible=True)
|
164 |
|
165 |
|
166 |
css = '''
|
@@ -212,29 +162,22 @@ with image_blocks as demo:
|
|
212 |
</p>
|
213 |
''')
|
214 |
with gr.Row():
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
prompt = gr.Textbox(placeholder="Your prompt (what you want in place of what is erased)", show_label=False, elem_id="prompt")
|
220 |
-
btn = gr.Button("Inpaint!", elem_id="run_button")
|
221 |
-
|
222 |
-
with gr.Accordion(label="Advanced Settings", open=False):
|
223 |
-
with gr.Row(equal_height=True):
|
224 |
-
guidance_scale = gr.Number(value=1.2, minimum=0.8, maximum=2.5, step=0.1, label="guidance_scale")
|
225 |
-
steps = gr.Number(value=12, minimum=6, maximum=20, step=1, label="steps")
|
226 |
-
# strength = gr.Number(value=1, minimum=0.01, maximum=1.0, step=0.01, label="strength")
|
227 |
-
seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed")
|
228 |
-
negative_prompt = gr.Textbox(label="negative_prompt", value=default_negative_prompt, placeholder=default_negative_prompt, info="what you don't want to see in the image")
|
229 |
-
|
230 |
-
|
231 |
-
with gr.Column():
|
232 |
-
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
233 |
-
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
|
239 |
gr.HTML(
|
240 |
"""
|
|
|
1 |
import gradio as gr
|
|
|
2 |
import numpy as np
|
3 |
+
|
4 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
from PIL import Image
|
6 |
import requests
|
|
|
7 |
from io import BytesIO
|
8 |
+
import io
|
9 |
+
import base64
|
10 |
+
|
11 |
+
hf_token = os.environ.get("HF_TOKEN")
|
12 |
+
auth_headers = {"api_token": hf_token}
|
13 |
+
|
14 |
+
def convert_mask_image_to_base64_string(mask_image):
|
15 |
+
buffer = io.BytesIO()
|
16 |
+
mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG")
|
17 |
+
# Encode the buffer in base64
|
18 |
+
image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8')
|
19 |
+
return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url
|
20 |
+
|
21 |
+
def download_image(url):
|
22 |
+
response = requests.get(url)
|
23 |
+
return Image.open(BytesIO(response.content)).convert("RGB")
|
24 |
|
25 |
+
def eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale):
|
26 |
+
|
27 |
+
# url = "http://engine.prod.bria-api.com/v1/eraser" # TODO: use this link!
|
28 |
+
url = "http://engine.int.bria-api.com/v1/eraser" # TODO: use this link!
|
29 |
+
|
30 |
+
payload = {
|
31 |
+
"file": image_base64_file,
|
32 |
+
"mask_file": mask_base64_file,
|
33 |
+
"seed": seed,
|
34 |
+
"mask_type": mask_type,
|
35 |
+
"original_quality": original_quality,
|
36 |
+
"text_guidance_scale": guidance_scale
|
37 |
+
}
|
38 |
+
response = requests.post(url, json=payload, headers=auth_headers)
|
39 |
+
response = response.json()
|
40 |
+
res_image = download_image(response["result_url"])
|
41 |
+
|
42 |
+
return res_image
|
43 |
|
44 |
ratios_map = {
|
45 |
0.5:{"width":704,"height":1408},
|
|
|
62 |
}
|
63 |
ratios = np.array(list(ratios_map.keys()))
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
|
66 |
|
67 |
def get_masked_image(image, image_mask, width, height):
|
|
|
89 |
|
90 |
return w,h
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
def read_content(file_path: str) -> str:
|
94 |
"""read the content of target file
|
|
|
98 |
|
99 |
return content
|
100 |
|
101 |
+
def predict(dict, guidance_scale=1.2, seed=123456):
|
|
|
|
|
|
|
102 |
|
103 |
init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024))
|
104 |
mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
105 |
|
106 |
+
image_base64_file = convert_mask_image_to_base64_string(init_image)
|
107 |
+
mask_base64_file = convert_mask_image_to_base64_string(mask)
|
108 |
|
109 |
+
mask_type = "brush"
|
110 |
+
original_quality = True
|
111 |
+
gen_img = eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale)
|
112 |
|
113 |
+
return gen_img
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
115 |
|
116 |
css = '''
|
|
|
162 |
</p>
|
163 |
''')
|
164 |
with gr.Row():
|
165 |
+
with gr.Column():
|
166 |
+
image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed"))
|
167 |
+
with gr.Row(elem_id="prompt-container", equal_height=True):
|
168 |
+
btn = gr.Button("Inpaint!", elem_id="run_button")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
+
with gr.Accordion(label="Advanced Settings", open=False):
|
171 |
+
with gr.Row(equal_height=True):
|
172 |
+
guidance_scale = gr.Number(value=1.2, minimum=0.0, maximum=2.5, step=0.1, label="guidance_scale")
|
173 |
+
seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed")
|
174 |
+
|
175 |
+
with gr.Column():
|
176 |
+
image_out = gr.Image(label="Output", elem_id="output-img", height=400)
|
177 |
+
|
178 |
+
# Button click will trigger the inpainting function (no prompt required)
|
179 |
+
btn.click(fn=predict, inputs=[image, guidance_scale, seed], outputs=[image_out], api_name='run')
|
180 |
+
|
181 |
|
182 |
gr.HTML(
|
183 |
"""
|