import gradio as gr import numpy as np import os from PIL import Image import requests from io import BytesIO import io import base64 hf_token = os.environ.get("HF_TOKEN") auth_headers = {"api_token": hf_token} def convert_mask_image_to_base64_string(mask_image): buffer = io.BytesIO() mask_image.save(buffer, format="PNG") # You can choose the format (e.g., "JPEG", "PNG") # Encode the buffer in base64 image_base64_string = base64.b64encode(buffer.getvalue()).decode('utf-8') return f",{image_base64_string}" # for some reason the funciton which downloads image from base64 expects prefix of "," which is redundant in the url def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") def eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale): # url = "http://engine.prod.bria-api.com/v1/eraser" # TODO: use this link! url = "http://engine.int.bria-api.com/v1/eraser" # TODO: use this link! payload = { "file": image_base64_file, "mask_file": mask_base64_file, "seed": seed, "mask_type": mask_type, "original_quality": original_quality, "text_guidance_scale": guidance_scale } response = requests.post(url, json=payload, headers=auth_headers) response = response.json() res_image = download_image(response["result_url"]) return res_image ratios_map = { 0.5:{"width":704,"height":1408}, 0.57:{"width":768,"height":1344}, 0.68:{"width":832,"height":1216}, 0.72:{"width":832,"height":1152}, 0.78:{"width":896,"height":1152}, 0.82:{"width":896,"height":1088}, 0.88:{"width":960,"height":1088}, 0.94:{"width":960,"height":1024}, 1.00:{"width":1024,"height":1024}, 1.13:{"width":1088,"height":960}, 1.21:{"width":1088,"height":896}, 1.29:{"width":1152,"height":896}, 1.38:{"width":1152,"height":832}, 1.46:{"width":1216,"height":832}, 1.67:{"width":1280,"height":768}, 1.75:{"width":1344,"height":768}, 2.00:{"width":1408,"height":704} } ratios = np.array(list(ratios_map.keys())) def get_masked_image(image, image_mask, width, height): image_mask = image_mask # inpaint area is white image_mask = image_mask.resize((width, height)) # object to remove is white (1) image_mask_pil = image_mask image = np.array(image.convert("RGB")).astype(np.float32) / 255.0 image_mask = np.array(image_mask_pil.convert("L")).astype(np.float32) / 255.0 assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size" masked_image_to_present = image.copy() masked_image_to_present[image_mask > 0.5] = (0.5,0.5,0.5) # set as masked pixel image[image_mask > 0.5] = 0.5 # set as masked pixel - s.t. will be grey image = Image.fromarray((image * 255.0).astype(np.uint8)) masked_image_to_present = Image.fromarray((masked_image_to_present * 255.0).astype(np.uint8)) return image, image_mask_pil, masked_image_to_present def get_size(init_image): w,h=init_image.size curr_ratio = w/h ind = np.argmin(np.abs(curr_ratio-ratios)) ratio = ratios[ind] chosen_ratio = ratios_map[ratio] w,h = chosen_ratio['width'], chosen_ratio['height'] return w,h def read_content(file_path: str) -> str: """read the content of target file """ with open(file_path, 'r', encoding='utf-8') as f: content = f.read() return content def predict(dict, guidance_scale=1.2, seed=123456): init_image = Image.fromarray(dict['background'][:, :, :3], 'RGB') #dict['background'].convert("RGB")#.resize((1024, 1024)) mask = Image.fromarray(dict['layers'][0][:,:,3], 'L') #dict['layers'].convert("RGB")#.resize((1024, 1024)) image_base64_file = convert_mask_image_to_base64_string(init_image) mask_base64_file = convert_mask_image_to_base64_string(mask) mask_type = "brush" original_quality = True gen_img = eraser_api_call(image_base64_file, mask_base64_file, seed, mask_type, original_quality, guidance_scale) return gen_img css = ''' .gradio-container{max-width: 1100px !important} #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 400px} #mask_radio .gr-form{background:transparent; border: none} #word_mask{margin-top: .75em !important} #word_mask textarea:disabled{opacity: 0.3} .footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5} .footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white} .dark .footer {border-color: #303030} .dark .footer>p {background: #0b0f19} .acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%} #image_upload .touch-none{display: flex} @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container {padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; max-width: 13rem; margin-left: auto;} div#share-btn-container > div {flex-direction: row;background: black;align-items: center} #share-btn-container:hover {background-color: #060606} #share-btn {all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.5rem !important; padding-bottom: 0.5rem !important;right:0;} #share-btn * {all: unset} #share-btn-container div:nth-child(-n+2){width: auto !important;min-height: 0px !important;} #share-btn-container .wrap {display: none !important} #share-btn-container.hidden {display: none!important} #prompt input{width: calc(100% - 160px);border-top-right-radius: 0px;border-bottom-right-radius: 0px;} #run_button{position:absolute;margin-top: 11px;right: 0;margin-right: 0.8em;border-bottom-left-radius: 0px; border-top-left-radius: 0px;} #prompt-container{margin-top:-18px;} #prompt-container .form{border-top-left-radius: 0;border-top-right-radius: 0} #image_upload{border-bottom-left-radius: 0px;border-bottom-right-radius: 0px} ''' image_blocks = gr.Blocks(css=css, elem_id="total-container") with image_blocks as demo: with gr.Column(elem_id="col-container"): gr.Markdown("## BRIA Eraser") gr.HTML('''

This is a demo for BRIA 2.3 ControlNet Inpainting. BRIA Eraser enables the ability to clear out and clean areas in an image or remove specific elements, while trained on licensed data, and so provide full legal liability coverage for copyright and privacy infringement.

''') with gr.Row(): with gr.Column(): image = gr.ImageEditor(sources=["upload"], layers=False, transforms=[], brush=gr.Brush(colors=["#000000"], color_mode="fixed")) with gr.Row(elem_id="prompt-container", equal_height=True): btn = gr.Button("Inpaint!", elem_id="run_button") with gr.Accordion(label="Advanced Settings", open=False): with gr.Row(equal_height=True): guidance_scale = gr.Number(value=1.2, minimum=0.0, maximum=2.5, step=0.1, label="guidance_scale") seed = gr.Number(value=123456, minimum=0, maximum=999999, step=1, label="seed") with gr.Column(): image_out = gr.Image(label="Output", elem_id="output-img", height=400) # Button click will trigger the inpainting function (no prompt required) btn.click(fn=predict, inputs=[image, guidance_scale, seed], outputs=[image_out], api_name='run') gr.HTML( """ """ ) image_blocks.queue(max_size=25,api_open=False).launch(show_api=False)